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Abstract
A review is presented of µSR measurements on CeB6, Ce1−x Lax B6, CeAg,
PrCu2, HoB2C2, DyPd3S4 and UPd3 which reveal multipolar, in particular
quadrupolar, effects. µ+ Knight shift data imply that the spin polarization of
conduction electrons at the µ+ may acquire an unusual temperature dependence
and anisotropy in the presence of a non-spherical charge distribution of the
f-electrons. This feature is also discussed theoretically. The interplay of dipolar
magnetic and electric quadrupolar order is shown to possibly explain properties
of the spontaneous fields at the µ+ in the magnetically ordered state, as well as
aspects of the µ+ spin lattice relaxation. The possibility of magnetic-octupolar
effects is briefly considered.

1. Introduction

Since the 1970s it has become increasingly recognized that the elastic, magnetic and structural
properties of rare earth and actinide intermetallic compounds and oxides are affected by
multipolar interactions in addition to the crystalline electric field acting on the 4f and 5f
electrons [1]. Besides the well studied spin–spin exchange and superexchange mechanisms
and the one-ion and two-ion magneto-elastic couplings, the two-ion electric quadrupolar and
magnetic-octupolar interactions may have to be considered. While the latter are not yet
experimentally demonstrated beyond doubt,quadrupolar interactions and quadrupolar ordering
phenomena are observed in many compounds. The necessary condition is that the orbital
angular momentum of the f-electron shell is not quenched and that the lowest lying levels of the
CEF-split ground state multiplet (LS J ) involve a charge distribution which is not spherically
symmetric and is characterized by non-zero components of the quadrupole moment tensor
which may be written as

(Qi j )�λ = 〈�λ|Qi j |�λ〉
where Qi j = 3Q

2J (2J−1)
(Ji J j + J j Ji − 2

3 J (J +1)δi j) is the quadrupole operator. The constant Q is
the (ionic) quadrupole moment and |�λ〉 is the λth eigenfunction of the �th CEF level. In cubic
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systems intrinsic non-zero quadrupole moments are not possible in singlet or Kramers-doublet
ground states, but they are in triplet and quartet states and non-Kramers doublets. Quadrupole
moments, or corresponding non-spherical charge distributions, can be induced, among others,
by strain involving the strain susceptibility χµ, which for a singlet ground state shows a Van
Vleck behaviour, in complete analogy to the magnetic susceptibility.

The bilinear quadrupole–quadrupole interaction of neighbouring f-electron ions can lead to
ferro- or antiferroquadrupolar order, which, like in the case of magnetic order, is characterized
by a propagation vector qQ. Quadrupolar order represents a type of orbital order. In contrast
to dipolar magnetic order, it is invariant under time reversal.

The onset of quadrupolar order is usually (but not always) accompanied by a structural
change, leading to a lowering of the crystal symmetry (e.g. from cubic to tetragonal) and is
sometimes viewed as a Jahn–Teller transition. It always leads to a lifting of the degeneracy,
e.g. a quartet state splits into two doublets.

Via the strong LS coupling, as compared to the CEF splittings, of the f-electrons, magnetic
and quadrupolar features are closely related, as particularly well reflected in the field induced
magnetic order in the quadrupolar phase, which is observed in various compounds (e.g. in
CeB6 [2]).

The presence of quadrupolar interactions is revealed in many properties, such as specific
heat, magnetization, magnetostriction, metamagnetism, elasticity, crystal structure, ultra-
sound absorption, etc, seen by many methods and techniques ranging from de Haas–van
Alphen measurement to synchrotron x-ray scattering. It is not obvious, however, that
µSR can also be a sensitive technique, since the positive muon is a magnetic probe that
is essentially blind to the shape of the charge distribution on neighbouring atoms or ions.
But, as will be demonstrated, µSR measurements have shown the powerful potential also
to study quadrupole related effects in metallic compounds via the study of the contact
hyperfine coupling to the conduction electrons, contributing to the µ+ Knight shift, and
through the spin–lattice-relaxation, induced possibly by fluctuating contact hyperfine fields
in the paraquadrupolar phase. The compounds displaying quadrupolar related features in
µSR measurements are up to now PrCu2, CeB6, Ce0.75La0.25B6, CeAg, DyP3S4, HoB2C2 and
UPd3.

As pointed out before, magnetic octupolar ordering, although widely discussed, has not
really materialized as yet in experiments. It is speculated that octupolar order may be present
in phase IV of Ce1−x LaxB6 (x = 0.25–0.3) and in NpO2 [3, 4].

Below we will provide some background information on the compounds listed above.

(1) PrCu2. This orthorhombiccompound is known to show an incommensurate, sinusoidally
modulated magnetic structure below ∼50 mK [5] and ferroquadrupolar order below
TQ ∼ 7.5 K [6]. A phase diagram concerning the ferroquadrupolar order is displayed
in figure 1. The ferroquadrupolar phase boundary depends strongly on along which
axis the external field is applied. More recently a metamagnetic transition was also
studied [7]. Both the metamagnetic transition and the antiferroquadrupolar transition could
be quantitatively explained on the basis of the CEF Hamiltonian acting on the 3H4 ground
state multiplet of Pr3+ and quadrupole–quadrupole interaction terms applying a mean field
approximation. Namely the term KJT〈Oxy 〉Oxy is responsible for the ferroquadrupolar
order below TQ and the term KM〈O2

2 〉O2
2 switches its sign from negative to positive across

the metamagnetic transition as a result of a rotation of the quadrupole moment O2
2 [8].

KJT and KM are coupling parameters. The CEF interaction splits the 3H4 multiplet into
nine singlets. For T > TQ the first excited state is about 6 K above the lowest level; for
T < TQ it is only about 3 K above the lowest level.
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Figure 1. Phase diagram of PrCu2 in the H –T plane showing the phase boundary to the
ferroquadrupolar state and its dependence on the orientation of the applied field. The solid curves
represent theoretical predictions (from [8]).

(2) CeB6, Ce1−x Lax B6. Cubic CeB6 is perhaps the best studied, but still controversially
discussed compound showing antiferroquadrupolar order. The lowest level of the CEF
split 2F5/2 ground state multiplet is the �8 quartet.
The phase diagram in the field–temperature plane is displayed in figure 2 [2]. In zero
and small applied fields at the lowest temperatures one finds a rather complex modulated
antiferromagnetic structure, phase III [9]. In higher field a single-k structure replaces the
complex double-k structure [2]. Above a field of 2 T, TN eventually becomes zero. The
transition temperature TQ to the antiferroquadrupolar phase II rises continuously with the
applied field up to at least 16 T, implying that the quadrupolar phase is stabilized by the
applied field. This is believed to originate from field induced octupolar moments [10]. The
antiferroquadrupolar (AFQ) order has been observed directly by resonant x-ray scattering,
allowing one to determine the temperature dependence of the AFQ order parameter in the
presence of different magnetic fields [11].
When applying a field in phase II both neutron diffraction [2] and NMR measurements [12]
reveal a field induced magnetic order. According to the neutron work this
antiferromagnetic order appears to be of a simple G type with propagation vector
q = ( 1

2
1
2

1
2 ) that also describes the antiferroquadrupolar order. The NMR results were

originally interpreted in terms of a triple-q structure [12]. This discrepancy gave rise to
much discussion, but has recently been resolved by considering field induced magnetic
octupolar moments of the 4f electron state and its associated hyperfine fields at the boron
sites [10].
Replacing a fraction x < 0.8 of the Ce ions by La a more complex phase diagram appears,
as shown in figure 3 for x = 0.25 [13]. A new phase IV shows up whose true nature is
still not settled. The antiferroquadrupolar phase II can only be reached in applied fields
exceeding ∼0.6 T. The boundary between phase III and phase II again depends strongly
on along which crystal axis the field is applied. On changing the La content to 0.3,
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Figure 2. Phase diagram of CeB6 , showing the magnetic phase III, the antiferroquadrupolar phase II
and the paramagnetic phase I. The magnetic phase displays a double-k antiferromagnetic structure
(III) and a single-k structure at higher fields (III′). The phase boundary between III and II depends
strongly on the orientation of the applied field (not shown), but not the boundary between II and I
(from [2]).

the new phase IV extends down to 0 K for fields up to ∼0.7 T, pushing phase III up to
fields >0.7 T [14]. Recent neutron diffraction work on Ce0.75La0.25B6 seems to show in
phase III the same magnetic structure as in phase III of CeB6 [15]. This appears to be
at variance with ZF-µSR data (see section 4). Kubo and Kuramoto [16, 3] propose an
octupole ordering model for phase IV.

(3) CeAg. This cubic compound possesses ferromagnetic order below Tc � 5.5 K and a
structural phase transition, driven by ferroquadrupolar order, at TQ = 15–16 K [1]. The
latter changes the crystal structure from cubic to tetragonal with (a/c) − 1 � 1.9% [17].
The ordered moment is probably oriented along the tetragonal axis [18]. Ce3+ is a Kramers
ion; the ground state in the cubic phase is the �8 quartet, as in CeB6.

(4) HoB2C2. It is a tetragonal (space group P4/mbm) compound and is exceptional in that
the antiferroquadrupolar order (TQ = 4.5 K) develops inside the antiferromagnetic state
(TN = 5.9 K) [19]. The tetragonal CEF interaction splits the 5I8 ground state multiplet
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Figure 3. Magnetic and quadrupolar phase diagram of Ce0.75La0.25B6. A new phase IV is
observed. The phase boundary between III and II depends again on the orientation of the applied
field (from [13]).

of Ho3+ into four doublets and nine singlets. The lowest level is presumably a pseudo
triplet [20].

(5) DyPd3S4. This cubic compound with NaPt3O4-type crystal structure belongs to the
rare earth palladium bronzes. It shows a transition to an antiferroquadrupolar order at
TQ = 3.4 K followed by two successive magnetic dipolar transitions at TN1 = 0.9 K and
TN2 = 0.7 K [21, 22]. Neutron diffraction revealed the magnetic structure to be canted
antiferromagnetic with different canting angles below TN1 and TN2 , respectively [22]. The
cubic CEF splits the 6H15/2 ground state multiplet of Dy3+ into two doublets and three
quartets. The lowest level is expected to be an orbitally degenerate quartet or pseudo
quartet (two nearly degenerate Kramers doublets). Inelastic neutron scattering results
point to a splitting of the quartet state below TQ, driven by the onset of quadrupolar
order [22]. No lattice distortion is observed across TQ [22].

(6) UPd3. The double-hexagonal close-packed structure of UPd3 leads to two different U
sublattices with hexagonal and quasi-cubic local symmetry at the U sites, rendering the
CEF splitting and the magnetic response of the two types of U4+ ions different. Various
measurements showed the presence of three phase transitions at T0 = 7.6 K, T1 = 6.8 K
and T2 = 4.4 K [23]. A phase diagram in the field–temperature plane is shown in
figure 4 for Hext ‖ a-axis [24]. Quite a different behaviour is found when Hext ‖ c-axis
(not shown) [28]. Polarized neutron diffraction studies demonstrate the development of
a periodic lattice distortion below T0, with a doubling of the crystallographic unit cell,
driven by the onset of antiferroquadrupolar order [24]. The transition at T1 is likewise
attributed to a change of the quadrupolar order parameter [25]. Definitive evidence for
antiferroquadrupolar order is provided by the observation of resonant x-ray scattering
from the aspherical charge distribution around the U ions [26]. Below T0, the ordered
quadrupole moments of Qx2−y2 -type are predominantly on the quasi-cubic sites: the unit
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Figure 4. Phase diagram of UPd3 showing the boundaries between the different
antiferroquadrupolar phases (from [24]).

cell is orthorhombic with an antiphase stacking of the moments along the c-direction.
Below T1, a rotation and tilt of the quadrupoles is required to explain the x-ray and neutron
results. The transition at T2 is in part magnetic, involving tiny moments of ∼10−2µB/U,
and involves also a change of the antiferroquadrupolar order parameter. However, true
long range magnetic order does not seem to be present [24, 25]. See also section 4.4.
As pointed out above, the quasi-cubic and hexagonal sublattices have different magnetic

susceptibilities,
↔
χ hex. Polarized neutron diffraction measurements show that χ⊥C

cub �
(3–5)χ⊥C

hex and χ
‖C
cub 	 χ

‖C
hex ≈ 0 below 10 K [25, 27]. Therefore, below 10 K, the quasi-

cubic sublattice provides the dominating contribution to the bulk susceptibility
↔
χ bulk.

The remainder of this paper is organized as follows. In section 2 we discuss the presence
of quadrupolar effects in the µ+ Knight shift. Section 3 provides a theoretical basis for the
understanding of the effects presented in section 2. In section 4 the interplay of multipolar
magnetic order and electric quadrupolar order, as observed in the experiments, is described.
Section 5 discusses spin lattice relaxation data in relation to quadrupolar effects. The short
section 6 addresses the suggestion that magnetic octupolar order in NpO2 and in phase IV of
Ce1−x Lax B6 (x = 0.25–0.3) could explain the presence of spontaneous magnetic fields at the
µ+. Finally in section 7 a summary and conclusions are given.

2. Quadrupolar effects reflected in the µ+ Knight shift

2.1. Introduction

In the paramagnetic state of rare earth and actinide intermetallic compounds the µ+ Knight shift
K is predominantly related to the magnetic response of the rare earth or actinide constituents,

expressed by the susceptibility tensor
↔
χ . Polarizing the f-electron moments by an external

magnetic field leads to dipolar and contact-hyperfine fields at the µ+ site, the latter induced by
the f-electron moments via the RKKY interaction. We write [29]

Ki = (Adip
i + Acon

i )χi + K 0
i (2.1)

where i refers to a symmetry axis of the crystal in question, which is usually also a principal

axis of the susceptibility tensor
↔
χ . Adip

i is the corresponding diagonal element of the dipolar
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coupling tensor
↔
Adip which possesses the property tr(

↔
Adip) = 0. Acon

i is the contact hyperfine
coupling parameter which is usually considered to be isotropic and temperature independent.
As we will see, this assumption is frequently not justified, in particular in all the compounds
looked at so far which display quadrupolar ordering. K 0

i is a temperature independent
contribution, usually small and positive and thought to arise from the Pauli paramagnetism of
the conduction electrons. However, K 0

i can show both signs and assumes in exceptional cases
huge values [30], features not understood at all. So ‘normally’ the temperature dependence of
Ki originates solely from χi (T ) and one expects to find that Ki (T ) scales with χi(T ).

For the considered class of compounds this scaling expectation is more often than not
violated, in particular at low temperatures. This feature is also seen in nuclear Knight shifts
(see e.g. [31]). Possible reasons for this are:

(i) The conduction electron spin density induced via the RKKY mechanism carries more
information on the state of the f-shells than what is contained in the magnetic susceptibility
function χf . This is discussed in section 3 and it is shown that, in general, (except for states
with angular momentum L = 0) Acon can become anisotropic and temperature dependent.

(ii) The magnetic susceptibility of the f-electron atoms next to the µ+ is different from the
bulk susceptibility. This may be relevant in systems which consist of different sublattices
of f-electron atoms like in UPd3 [25]. The contact hyperfine field at the µ+ may arise
mostly from one type of the f-electron atoms and hence one should use in equation (2.1)
the susceptibility related to those atoms. However, the relevant sublattice susceptibility is
usually not or not very well known.

(iii) A more important deviation of the local χ loc from the bulk χbulk may be induced by
the presence of the µ+. The µ+ will modify the crystalline electric field (CEF) at the
neighbouring f-electron atoms and consequently their CEF splitting, and hence modifies
the susceptibility of those atoms. This effect has been clearly demonstrated in µ+ Knight
shift measurements in PrNi5 [32], PrIn3 [33], and TmNi2B2C [34] and has been used to
prove the importance of CEF effects in UNi2Al3 and UPd2Al3 [35].

Considering the first possibility (i) the RKKY mechanism leads to exchange integrals which
depend on the orientation of the shapes of the charge distributions, characterized by their
quadrupole and higher moments. This effect may be strongly enhanced in the presence of
the µ+ at an interstitial site in the neighbourhood of the f-electron atom since the conduction
electron distribution around the µ+ will be highly inhomogenous, due to the formation of
a conduction electron screening cloud [37]. This disturbance in the conduction electron
distribution introduced by the µ+ may render quadrupolar effects more visible in the µ+ Knight
shift than in nuclear Knight shifts. We do not consider here the possible modification of the
RKKY coupling of two f-electron atoms when the µ+ is placed between them.

In section 3 the role of the orbital exchange mechanism in determining the contact coupling
parameter will be discussed, leading to a qualitative explanation of some of the observed
‘anomalous’ features of Acon in the presented µSR data. In the following we will review and
discuss the evidence for quadrupolar effects in the µ+ Knight shift. The compounds studied
are HoB2C2, CeB6, CeAg, PrCu2 and UPd3.

2.2. HoB2C2

This compound was the first one which revealed clearly that the loss of scaling in the K
versus χ plot could not have been induced entirely by the µ+ [38]. The transverse field
(TF) measurements at Hext = 6 kOe revealed a single component when Hext ‖ c-axis and
two components with equal weight when Hext ⊥ c-axis [38]. Figures 5(a)–(c) display the
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Figure 5. Plot of the µ+ Knight shift in HoB2C2 versus magnetic susceptibility for (a) Hext ‖ c-
axis (only one component present), (b), (c) for Hext ⊥ c-axis (two components present) (adapted
from [38]).

extracted Knight shifts for the three components versus the bulk magnetic susceptibility χi .
As can be seen, the Knight shift Ki scales with the bulk χi at high temperatures. From the
high temperature slopes it was possible to determine the µ+ site in the usual way [29]. It is the
8i site at a distance of 1.7 Å from the nearest Ho ion (see figure 6). More instructive is the fact
that K‖ and K⊥1 show a zero crossing and a reversed slope dKi/dχbulk

i at and below about 14
and 50 K respectively. At the crossing point equation (2.1) becomes(

Adip
‖,⊥1 + Acon

‖,⊥1

)
χ loc

‖,⊥(T ) + K 0
‖,⊥1 = 0. (2.2)
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Figure 6. Schematic plot of the crystal structure of tetragonal HoB2C2. The µ+ sites (8i) are also
indicated in the upper panel. The lower panel shows the precise location of one of the µ+ sites
(from [38]).

Since, as can be read from figures 5(a), (b), K 0
‖,⊥1 is rather small (K 0

‖ = −5.7(8)×10−3, K 0
⊥1 =

−3.6(5) × 10−3) and K 0
‖,⊥,i/χ

bulk
‖,⊥ = 0.005–0.007 kG/µB � 0 at the zero crossing points we

find

Adip
‖,⊥1 + Acon

‖,⊥1 � 0. (2.3)

Since Adip
‖,⊥1,2 can be extracted from the high temperature slopes dK‖,⊥1,2/dχ‖,⊥ (Adip

‖ =
−2.42 kG/µB, Adip

⊥1 = −0.43 kG/µB, Adip
⊥,2 = 2.86 kG/µB), Acon

‖,⊥1 are rather well determined
at the crossing points without having to know χ loc

‖,⊥ or χbulk
‖,⊥ (solid circle and star in figure 7).

Note that in the measurements the orientation of Hext in the basal plane was not parallel to the
a- or b-axis but tilted by ∼21◦ from the a-axis [38]. Hence Adip

⊥i are not to be identified with

Adip
aa or Adip

bb . In the high temperature scaling regime χ loc
‖,⊥ = χbulk

‖,⊥ . Assuming that this identity
also holds at lower temperature (�100 K), we can extract Acon

‖,⊥1,2(T ) from K‖,⊥1,2(T ) using
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Figure 7. Temperature dependence of the contact coupling parameters, Acon, extracted from K‖ (T )

and K⊥i (T ) in HoB2C2. The star and the filled circle follow directly from the zero crossing of
K‖(T ) and K⊥1(T ) at particular temperatures without having to know the relevant susceptibilities.

equation (2.1). The results are displayed in figure 7. Should χ loc(T ) deviate from χbulk(T ) at
lower temperatures, Acon

‖,⊥(T ) would, of course, look different but would be unchanged at the
zero-crossing temperature. Hence the overall behaviour of Acon

‖,⊥(T ) would in any case not be
drastically different from that shown in figure 7.

As figure 7 reveals, the contact coupling constants Acon
‖,⊥1,2 become temperature dependent

below ∼150 K, change from negative to positive, and develop a partial anisotropy, particularly
in the basal plane. Apparently it matters whether the shortest µ+–Ho distance is oriented
parallel or perpendicular to the applied field. These observations point to a scenario in which
the RKKY induced conduction-electron-spin polarization depends on the orientation of the
Ho 4f quadrupole moments with respect to screening cloud around the µ+, i.e. to the first
possibility (i). Within this scenario the quadrupole moments are randomly oriented above
∼100 K, resulting in a temperature independent and isotropic Acon, followed, below 100 K,
by a regime in which the quadrupole moments start to order, e.g. by aligning collinearly
with the induced magnetic moments, i.e. a kind of field induced ferro- or antiferro- or more
complicated quadrupolar state is established, depending on which arrangement leads to the
lowest energy. Unfortunately it was not possible to extend the measurements down to the onset
of the spontaneous antiferroquadrupolar state at 4.5 K since it was masked by the magnetic
order setting in at 5.9 K [19].

If the suggested scenario is correct, HoB2C2 would be the first compound where a field
induced quadrupolar order was observed. This would find its counterpart in the field induced
magnetic order observed in some compounds in the quadrupolar phase, e.g. in CeB6. Our
model may be checked by careful measurements of the temperature dependence of the lattice
constants and other relevant bulk parameters in the presence of Hext > 0. Finally, by inspecting
figures 5(a)–(c), one might get the impression that K‖⊥1,2 scales again with χ‖,⊥ at low
temperatures, i.e. below 20–50 K. The data are indeed fitted very well by a straight line,
but the temperature independent K 0

‖,⊥1,2 show drastically different and unphysically large
negative values. In particular K 0

‖,⊥1,2 would become strongly temperature dependent in the
region between the two scaling regimes. Hence the apparent scaling at low T is to be viewed
as accidental. This was not recognized in [38]. However, at high T the µ+ induced change of
the CEF level scheme has a negligible effect on the susceptibility and hence K ∝ χ ∝ 1/T
and the scaling is not accidental.
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Figure 8. (a) Temperature dependence of the two Knight shifts in CeB6 associated with the two
magnetically inequivalent d sites for Hext ‖ [001], (b) extracted contact coupling parameters,
Acon‖ , Acon⊥ . The symbols ‖ and ⊥ indicate whether the applied field (6 kOe) is parallel or

perpendicular to the distance vector connecting the µ+ and the nearest Ce3+ neighbours. Note
that Acon is already anisotropic above TQ.

2.3. CeB6

CeB6 is the compound which shows the transition into the antiferroquadrupolar state most
pronouncedly reflected in the muon Knight shift as figure 8(a) clearly demonstrates [39]. The
shifts above ∼10 K up to 200 K (the highest temperature investigated) scale perfectly with
the bulk susceptibility. The TF signal consists of two components with an amplitude ratio
of 2:1. This is to be expected since the only two reasonable interstitial sites in this cubic
system, the d and c sites (see figure 9), split into two magnetically inequivalent subsets with
an abundance ratio likewise of 2:1. If one proceeds in the usual way, assuming that Acon is
isotropic and temperature independent one finds from the high temperature slopes of K versus
χ that Adip

zz = 5.93 kG/µB and Acon = 1.85 kG/µB. The calculated values of Adip
zz for the d and

c sites are 3.94 kG/µB and −1.14 kG/µB, respectively. Hence the measured value is far from
the expected values for the two possible sites. A lattice distortion around the µ+ as a possible
origin of this discrepancy can be excluded since it would imply a giant local lattice contraction
of ∼14%, while generally a lattice expansion of a few per cent is found around µ+ or protons
(hydrogen) in metals. On the other hand, Saitoh et al [40] claimed on the basis of polarized
neutron diffraction measurements that a sizable fraction of the field induced magnetization or
spin polarization is found at distinct positions inside and outside of the B6 octahedron. This
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Figure 9. Crystal structure of cubic CeB6. The µ+ are located at the interstitial d sites.

additional source for fields at the µ+ site, suggested to be the d site, allowed an explanation
of the discrepancy with very reasonable implications for the induced spin polarization inside
and around the B6 complex [39]. However, in the meantime it became clear that the original
claim of Saitoh et al was probably incorrect, and no magnetization density is associated with
the B6 complex [41]. Hence the discrepancy between the calculated and extracted Acon had
to be attributed to a different source. The solution is to drop the conventional assumption that
Acon is isotropic.

Assigning the µ+ to the d site, which is more spacious than the c site (at the c site the
distance to the nearest B neighbour is only 0.83 Å, which appears too small to allow the µ+ to
reside there), and taking the calculated Adip

zz as the true value, Acon can be extracted above 10 K
from the slopes dK/dχ . For example, if Hext is oriented parallel to the [001]-axis, defined to
be the z-axis, the d sites with z = 1

2 possess the slope

dK‖
dχ

= (
Acon

‖ + Adip
zz

) = 7.89 kG/µB

and the d site with z = 0 or 1 (there are twice as many as with z = 1
2 )

dK⊥
dχ

=
(

Acon
⊥ − 1

2
Adip

zz

)
= −0.97 kG/µB.

The parallel and perpendicular symbols refer to the relative orientation of the induced
nearest neighbour (nn) Ce 4f moment and the distance vector µ+–nn Ce. We find Acon

‖ =
3.94 kG/µB and Acon

⊥ = 1.01 kG/µB.
The angular dependence of the Knight shift of the two components has been measured in

the case that Hext is rotated in a (11̄0)-plane by turning the crystal around the [11̄0]-axis; see
figure 10. Theoretically one expects that [39]

Kz= 1
2
(θ) = K 0

1 +
(

Acon
z= 1

2
(θ) + Adip

zz P0
2 (cos θ)

)
χ, (2.4)

Kz=0,1(θ) = K 0
2 +

(
Acon

z=0,1(θ) − 1
2 Adip

zz P2(cos θ)
)
χ, (2.5)
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Figure 10. Orientation dependence of the two precession frequencies ν1, ν2 in CeB6 at (a) 5 K,
(b) 2.35 K, (c) 3.4 K. The applied field Hext is rotated in a (11̄0)-plane and θ is the angle between the
[001]-axis and Hext. The solid lines represent fits of the form of equation (2.6) yielding generally
A2 = −1/2A1, but note that below 2.5 K A1 and A2 have changed their signs. The temperature at
which this happens is field dependent (not shown).

where Acon
i (θ) are not known a priori and θ is the angle between Hext and the [001]-axis.

Experimentally one finds

Ki (θ) = K 0
i + Ai P2(cos θ)χ (2.6)

with A2 = −(1/2)A1, implying that Acon
i (θ) = Acon

i P2(cos θ) with also Acon
2 = −(1/2)Acon

1 .
This is observed above TQ as well as below TQ at 3.4 K and at 2.35 K (just above TN); see
figure 10. This is a puzzling outcome since it suggests that the contact hyperfine field possesses
a dipolar character, which is not expected. However, considering that Acon refers to the spin
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polarization of the conduction electrons at the µ+ site induced via the RKKY mechanism by
the induced moments on the Ce sites, and that the RKKY coupling depends on the orientation
of the 4f quadrupole moments (see section 3), and, further, that in the �8 quartet state the
quadrupole moment can easily follow the magnetic dipole moment, suggests the use of the
ansatz

Acon(θ) =
∑

j

A∗
⊥, j sin2 ϑ j + A∗

‖, j cos2 ϑ j , (2.7)

where the sum extends over the nearest Ce neighbour sites (only two in CeB6) and ϑ j is the
angle between the induced moment at site j and the distance vector connecting the site j with
the µ+ site (a d site in the present case). A∗

‖,⊥ are to be viewed as coupling constants parallel
and perpendicular to the distance vector connecting the µ+ and a nearest Ce3+ ion. Note that the
direction of the contact hyperfine field is given by the direction of the generating 4f-moment
and hence Acon cannot be cast into tensorial form. But see also the discussion in section 3.

For the µ+ sites with z = 1
2 , ϑ j is just given by the angle between Hext and the [001]-axis,

i.e. ϑ = θ and hence equation (2.7) becomes

Acon
z= 1

2
(θ) = 2

3

(
A∗

‖ + 2A∗
⊥ + 2(A∗

‖ − A∗
⊥)P2(cos θ)

)
. (2.8)

For the sites with z = 0, 1

cos ϑ = 1√
2

sin θ, (2.9)

and hence

Acon
z=0,1(θ) = 2

3

(
A∗

‖ + 2A∗
⊥ − (A∗

‖ − A∗
⊥)P2(cos θ)

)
. (2.10)

Thus we find that the prefactors of P2(cos θ) also display the ratio −1/2. The reason for this
outcome can be traced back to the circumstance that Hext was turned in the (11̄0)-plane which
for the sites with z = 0, 1 leads to the factor 1/

√
2 in equation (2.9). Further, Acon

‖ = 2A∗
‖ and

Acon
⊥ = 2A∗

⊥. The correct reproduction of the experimental angular dependence of the Knight
shifts on the basis of equation (2.7) above and below TQ seems to confirm the assumption that
the quadrupole moment follows the magnetic dipole moment in phase I as well as in phase II.
The latter is also predicted theoretically [10].

So far we have mainly only considered the Knight shift results above 10 K in the scaling
regime. As figure 8(a) shows, a dramatic change happens when the temperature drops below
TQ and both K‖ and K⊥ pass through zero at ∼2.3 and 3.9 K, respectively. However, the
orientational dependence, as emphasized above, is still given by equations (2.4), (2.5) and (2.7).
Assuming that the local susceptibility continues to be equal to the bulk susceptibility we can
extract Acon

‖ and Acon
⊥ as in the case of HoB2C2; see figure 8(b). Since, like in HoB2C2, the

temperature independent K 0
‖,⊥ are relatively small (K 0

‖ � −350 ppm, K 0
⊥ � 114 ppm) the

zero crossing of K 0
‖,⊥ allows one again to extract Acon

‖,⊥ at these temperatures without having
to know the relevant magnetic susceptibility to any precision. The thus determined Acon

‖,⊥ fall
nicely on top of the data in figure 8(b). Acon

‖,⊥ shows a strong temperature dependence and Acon
‖

even changes its sign below about 3.2 K. The transition temperature TQ is clearly manifest in
the data and Acon

‖ seems to reveal a second anomaly at ∼4.1 K of unknown origin. Evidently,
below TQ, the antiferroquadrupolar order must lead to drastically changed contact coupling
constants, pointing to different average non-spherical charge distributions of the 4f electrons,
alternating from Ce site to Ce site, and to a lifting of the degeneracy of the quartet ground state.
The temperature dependence of Acon

‖,⊥ below but close to TQ follows the relation (1 − T/TQ)β

with β � 1/3, which is essentially the same as found for the antiferroquadrupolar order
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Figure 11. Crystal structure of cubic CeAg. The µ+ is most likely located at the c site in a
(001)-plane.

parameter in [11]. Hence it appears that Acon
‖,⊥ mirrors directly the temperature dependence of

the order parameter [42].
In view of the suggestion that field induced magnetic octupole moments play an important

role in phase II one might wonder whether the fields arising from the octupole moments could
not explain the drastic temperature dependenceof the µ+ Knight shift below TQ. If so, however,
the octupolar fields must become of the same order of magnitude as the dipolar and contact
fields, which is considered to be most unlikely (see also section 6).

2.4. CeAg

The crystal structure of cubic CeAg is very similar to CeB6. The Ag atom replaces the B6

complex and the available interstitial sites are again the c and d sites (see figure 11). According
to [43] the muon is most likely located at the c site, unlike the situation in CeB6.

In addition a second site is found which may be a vacancy in the Ag sublattice and which
is occupied by about 13% of the implanted µ+. This fraction will not concern us further here.

We begin with a discussion of the angular dependence of the Knight shifts associated with
the c site when Hext is rotated in the (001)-plane [43]. In general we find three components
in the TF signal with equal amplitudes, as is to be expected when Hext is not parallel to the
[010]-axis or the [100]-axis. This is in contrast to the case that Hext is rotated, e.g. in the
(11̄0)-plane (see the previous discussion in the case of CeB6). The c site is now split into three
magnetically inequivalent subsites, represented by the sites ( 1

2
1
2 0), (0 1

2
1
2 ) and ( 1

2 0 1
2 ). For these

sites we write [43]

K (ϕ)(0 1
2

1
2 ) =

[
Acon
(0 1

2
1
2 )

(ϕ) + 1
2

(
Adip

xx + Adip
yy +

(
Adip

xx − Adip
yy

)
cos 2ϕ

)]
χ, (2.11)

K (ϕ)( 1
2 0 1

2 )
=

[
Acon
( 1

2 0 1
2 )

(ϕ) + 1
2

(
Adip

xx + Adip
yy +

(
Adip

yy − Adip
xx

)
cos 2ϕ

)]
χ, (2.12)

K (ϕ)( 1
2

1
2 0) =

[
Acon

( 1
2

1
2 0)

(ϕ) + Adip
yy

]
χ, (2.13)

where ϕ is the angle between Hext and the [100]-axis. The Adip
ii for the c site are calculated

to be Adip
xx = −1.528 kG/µB, Adip

yy = +0.764 kG/µB. Hence we should find two shifts,
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Figure 12. Orientation dependence of the precession frequencies νi (i = 1, 2, 3) in CeAg at
25 K when Hext (6 kOe) is rotated in an (001)-plane. Note the splitting of the νi (i = 1, 2, 3)

for Hext ‖ [100] or ‖ [010]. The fourth frequency ν4 arises probably from µ+ located at an Ag
vacancy (from [43]).

which are dependent on ϕ and shifted by 90◦ with respect to each other, and one shift,
which is orientation independent. Further, for ϕ = 0, K (0)( 1

2 0 1
2 ) = K (0)( 1

2
1
2 0) and for ϕ = 90◦,

K (90◦)(0 1
2

1
2 ) = K (0)( 1

2
1
2 0) as long as Acon is isotropic. These expectations are well followed

by the measurements at 25 K (see figure 12) except that the degeneracies for Hext ‖ [100]-axis
and Hext ‖ [010]-axis are not observed. A small significant splitting is clearly present as the
overall ϕ-dependence reveals. A misalignment can be excluded because K (ϕ)( 1

2
1
2 0) should

become orientation dependent, which is not observed. Since the susceptibility is isotropic and
the crystal structure at 25 K still cubic, it follows that the splitting has to be attributed to the
contact coupling parameter Acon which must become anisotropic. We find again agreement
with the data if we express Acon(ϕ) by

Acon(ϕ) =
4∑

i=1

[
sin2 θi

(
cos2 
i A∗

x′x′ + sin2 
i A∗
y′ y′

)
+ cos2 θi A∗

z′z′
]
, (2.14)

which, if all the A∗
ii were positive, describes a non-axially symmetric ellipsoid. The x ′, y ′, z′

refer to a coordinate system where the z′-axis is parallel to the [001]-axis and the x ′-axis is
parallel to Hext or the induced µ = χHext . The angles θi and 
i are the direction angles
of the distance vector connecting the µ+ and one of the nearest Ce neighbours. The sum
runs over the four nearest Ce neighbours around the c site. This equation is analogous
to equation (2.7), except that it allows for the possibility that also perpendicular to µ we
have anisotropic coupling parameters defined with respect to the [001]-axis. In CeB6 we
had assumed A∗

x′ x′ = A∗
y′ y′ = A∗

⊥. Equation (2.14) allows us to rewrite the Acon(ϕ) in
equations (2.11)–(2.13) as follows [43]:

Acon
(0 1

2
1
2 )

(ϕ) = 2A∗
z′z′ + A∗

y′ y′ + A∗
x′x′ +

(
A∗

y′ y′ − A∗
x′x′

)
cos 2ϕ (2.15)

Acon
( 1

2 0 1
2 )

(ϕ) = 2A∗
z′z′ + A∗

y′ y′ + A∗
x′x′ +

(
A∗

x′ x′ − A∗
y′y′

)
cos 2ϕ (2.16)

Acon
( 1

2
1
2 0)

(ϕ) = 2
(

A∗
x′x′ + A∗

y′y′
)
. (2.17)

Equations (2.15)–(2.17) exhibit the same angular dependence as the dipolar contribution in
equations (2.11)–(2.13), in particular the absence of any ϕ-dependence at the ( 1

2
1
2 0) site, but

the degeneracy at ϕ = 0◦ and 90◦ is now lifted provided that A∗
x′ x′ �= A∗

y′y′ . So the qualitative
behaviour of the observed Knight shifts allows us already to conclude that the contact coupling
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Figure 13. Clogston–Jaccarino plots of Knight shift versus susceptibility in CeAg: (a) K1, K2;
(b) K3 for Hext ‖ [100] (from [43]).

parameters are anisotropic, and this conclusion is not dependent on the assumed µ+ site. The
anisotropy is not restricted to the temperature regime below TQ but occurs as well above TQ

as in CeB6, and, below ∼100 K, in HoB2C2 and PrCu2 (see section 2.5). Again it seems that
some field induced quadrupolar state is formed above TQ. The temperature dependence of
K(0 1

2
1
2 ), K( 1

2 0 1
2 ) and K( 1

2
1
2 0), measured for ϕ = 0, reveals that the Knight shifts scale with the

susceptibility from approximately 10 K up to 90 K. Above 90 K, µ+ diffusion was observed to
set in and all three components collapsed into a single component around 150 K. In contrast to
CeB6, the transition into the ferroquadrupolar state was not reflected in the Knight shift data.
The transition temperature TQ � 15 K is well situated in the scaling regime of K(0 1

2
1
2 ) and

K( 1
2 0 1

2 ) (see figure 13), and hence the Acon do not change when passing from the paramagnetic
phase into the ferroquadrupolar state. This could indicate that the field induced quadrupolar
order above TQ and the spontaneous ferroquadrupolar below TQ are identical. Below TQ the
only effect of Hext is to induce a single domain ferroquadrupolar state. In contrast, in CeB6,
in view of the strong anomaly of Acon at TQ, the field induced quadrupolar state must be quite
different from the spontaneous antiferroquadrupolar order below TQ.

Analyzing the scaling regime with the assumption that the contact coupling parameter
is isotropic, one arrives at Adip

xx = 4.23 kG/µB = − 1
2 Adip

yy [43], to be compared with the
calculated values for the c and d sites of 0.764 kG/µB and −2.644 kG/µB, respectively. The
experimental value is far away from the calculated values (as in CeB6; see the discussion in
section 2.3), but least far from the c site value. Adopting the c site as the most likely site and
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Figure 14. The extracted temperature dependence of Acon for Hext ‖ [100] and the different c sites
in CeAg. The filled points for T > Tc were derived from the Ki , and the open points for T < Tc
from the spontaneous fields Bi (from [43]).

assuming that Adip
xx = 0.764 kG/µB is the true value and, further, that χloc = χbulk, one can

determine the Acon as in the previous cases. The result is displayed in figure 14. The values
below TC = 5.5 K are derived from the measured spontaneous fields in the ferromagnetic
state. These results suggest that the ferroquadrupolar state undergoes some structural change
at the Curie temperature TC. This possibility must be checked by careful measurement of the
tetragonal lattice parameters across TC.

A final comment on the implications of the ansatz equation (2.13) is in order. This
expression does not only imply that one of the principal axes of the quadrupole moment
follows the induced magnetic moment µ = χ · Hext but also that a second principal axis is
fixed with respect to the crystal axes. In the present case, it is the principal axis along [001]
perpendicular to the plane which contains Hext.

2.5. PrCu2

The µ+ Knight shift in PrCu2 appears to be affected by both a µ+ induced modification of the
local susceptibility (i.e. the susceptibility of the Pr ions next to the µ+) and by quadrupolar
effects. Figure 15 displays the measured Knight shift K versus the bulk susceptibility χbulk for
Hext aligned along the three principle axes of the orthorhombic crystal structure [44]. Note
that for Hext ‖ (a, c)-plane the TF signal splits below 65 K into two components with equal
amplitudes. Here we discuss the average Knight shift of the two components. The splitting
is due to the antiferromagnetic order below ∼65 K (see section 4.1). No scaling of K with
the susceptibility is found, not even at high temperatures (T � 120 K), as a closer inspection
reveals. On the other hand, in this regime K (T ) is very well fitted by the Curie–Weiss relation

Ki (T ) = Ai C

T − TCW,i
+ K0,i , (2.18)
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Figure 15. Clogston–Jaccarino plot of Knight shift in PrCu2 for Hext oriented along the a, b and
c axes. Kb is shifted up by 0.2% to allow its display on a log scale. The horizontal line corresponds
to Kb = 0 (from [44]).

Table 1. Collection of fit parameters (equation (2.18)).

Hext ‖ a Hext ‖ c Hext ‖ b

Ai (kG/µB) 2.318(3) 0.433(3) −1.122 fixeda

K 0
ii (ppm) −836(24) 188(32) −515(20)

TCW (K) 96.4(5) 71.8(1.3) −138(8)

TC,bulk (K) 22.7 −32.7 −102(1)

a See text.

where TCW is a Curie–Weiss temperature, C = N J (J + 1)g2
J µ

2
B/3Kb the Curie constant,

Ai = Acon
i + Adip

i (i = a, b, c) the total magnetic coupling constant, and K0,i a temperature
independent term. The fit yields TCW which are significantly different from those of the
bulk susceptibility, listed in table 1 [44]. Assuming that C is given by the Hund’s rule
value (=1.6 K emu mol−1 for Pr3+) and is not modified by the presence of the µ+, Ai can
be determined. The Curie–Weiss curves for the bulk and the local susceptibility are displayed
in figures 16(a)–(c) and the relevant temperature ranges are indicated.

Assuming that Acon is isotropic and temperature independent, the dipolar coupling tensor
can be determined which leads to the assignment of the µ+ to the 4e site at the position
( 1

2
1
4 0.613), approximately at the centre of the triangle formed by Pr ions (see figure 17).

The same site was found in the isostructural compounds GdCu 2 [45] and CeCu2 [46]. Vice
versa from this agreement we conclude that the assumptions on Acon and C were correct. So
at high temperatures (i.e. T � 100 K) we have the same situation concerning the contact
coupling parameter as in HoB2C2, and quadrupolar effects seem to be absent. The deviation
of the local susceptibility from the bulk susceptibility is in this case understood to be a muon
induced feature as mentioned earlier in this section. For the orientation Hext ‖ b-axis,
however, the local χ loc seems to be not much different from χbulk (figure 16(b)). For
Hext ‖ b-axis, Kb(T ) displays a zero crossing at 40 K (see the inset in figure 16(b))
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Figure 16. Plot of bulk and local magnetic susceptibility in PrCu2 versus temperature for
(a) Hext ‖ a-axis, (b) Hext ‖ b-axis, (c) Hext ‖ c-axis. The fat curves represent the bulk
susceptibilities χbulk

i (taken from [8]), the dashed curves the Curie–Weiss fits to the high temperature
χbulk

i , and the thin curves the Curie–Weiss fits to high temperature Knight shifts Ki (i = a, b, c),
using equation (2.18) with C = 1.6 emu mol−1. The range of validity of the Curie–Weiss fit of
the Ki is also indicated. The inset in (b) shows the temperature dependence of Kb , revealing the
change of its sign at ∼40 K.

which implies, as discussed before, that Acon
b must also have become temperature dependent

below 120 K so that at 40 K equation (2.2) is fulfilled, i.e. Acon
b = K 0

b /χb − Adip
bb . Since

|K 0
b /χbulk

b (40 K)| � 0.127 kG/µB < |Adip
bb | = 1.83 kG/µB [44], Acon

b (40 K) � −Adip
bb within

14% even if the local χ loc
b should be smaller by a factor of 2 than χbulk

b . But since χbulk
b and χ loc

b
are not much different above 150 K we assume that χ loc

b � χbulk
b also below 150 K. With this
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Figure 17. Crystal structure of PrCu2. The µ+ location at a 4e site is indicated.

Figure 18. Estimated temperature dependence of Acon
b in PrCu2. Note the slight break at TQ.

assumption and the known Adip
bb we can extract Acon

b (T ) from Kb(T ) as in the previous cases,

and Acon
b (40 K) is fixed rather well to −Adip

bb . The results are displayed in figure 18. Because
for the two other orientations χ loc

a,c are rather different from χbulk
a,c already at high temperatures

and Ka(T ) and Kc(T ) do not show a zero crossing, Acon
a,c (T ) cannot meaningfully be extracted

from Ka(T ) and Kc(T ), but it is reasonable to expect that Acon
a,c become temperature dependent

as well. In addition, below 120 K Acon
a �= Acon

b �= Acon
c , i.e. Acon becomes anisotropic. We

interpret this again as reflecting a transition from a paraquadrupolar state for T � 120 K to a
partially ordered state below 65 K (i.e. the quadrupolar degrees of freedom are frozen out to
a certain extend), which, since it is also observed in zero field measurements (see section 4),
appears not to be field induced but may be viewed as a precursor to the ferroquadrupolar order
below TQ � 7.5 K. Note that Acon

b (T ) exhibits a change in temperature dependence at TQ

(figure 18), although not as strong as in CeB6. The implications have yet to be worked out.

2.6. UPd3

UPd3 played an important role in the development of our understanding that quadrupolar
effects are not invisible to µSR [36]. On the other hand the double hexagonal structure of
UPd3 rendered the quantitative analysis of muon Knight shift data impossible due to the fact that
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Figure 19. Temperature dependence of (a) K1 and (b) σ1 for Hext ‖ c-axis in UPd3. The three
transition temperatures are indicated by the dashed vertical lines (from [36]).

the U atoms form two inequivalent sublattices with hexagonal and quasi-cubic symmetry and
different magnetic responses, and that no detailed information on the sublattice susceptibilities
is available. The TF signal, recorded at Hext = 6 kOe, consist of two components with an
amplitude ratio of 2:1. The orientation dependence of the two extracted Knight shifts K1 and
K2 imply that the µ+ occupy interstitial sites with axial symmetry. The overall temperature
dependence of the Ki for Hext ‖ c-axis and Hext ⊥ c-axis displayed a complex behaviour
with K ‖

1 and K ⊥
1 crossing zero at different temperatures. But since the Knight shift is induced

by U atoms in different sublattices with different magnetic susceptibilities, the zero crossing
may just reflect some trivial cancellation features.

Nevertheless, the three transition temperatures T0, T1 and T2 become clearly manifest in
the Knight shifts, and in particular also in the Gaussian relaxation rates σ of the TF signals.
The anomalies at T0, T1 and T2 are strongest in the dominating component, and we will limit
the discussion to this component. Figures 19 and 20 display the temperature dependence of K1

and σ1 for Hext ‖ c and Hext ⊥ c. The transition temperatures show up as steps and changes
of slopes. It is found that σ1 as well as σ2 (not shown) increase proportional to Hext, but
only below 10 K, i.e. the line broadening appears to be associated with the transition into the
quadrupolar ordered regime and not with extrinsic effects, related, for example, to the quality
of the single crystal specimen. Above 10 K, σ1 and σ2 are close to the Gaussian relaxation rate
in zero field [36].
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Figure 20. Temperature dependence of (a) K1 and (b) σ1 for Hext ⊥ c-axis in UPd3 (from [36]).

Figure 21. Temperature dependence of the bulk magnetic susceptibility of UPd3. Note the small
anomalies at T0, T1 and T2 (data provided by McEwen).

The bulk magnetic susceptibilities χ
‖,⊥
b show relatively small anomalies at T1 and T2 and

no noticeable change at T0 (see figure 21), and also the overall variance of χ
‖,⊥
bulk between T2
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and T0 is not dramatic. It may safely be assumed that the U-sublattice susceptibilities are not
behaving much differently. In contrast, for example σ1 for Hext ⊥ c changes from roughly
0.15 µs−1 near T0 to ∼0.55 µs−1 just below T2, while the corresponding χ⊥ changes only
from 0.018 to 0.027 emu mol−1. Also the jumps of σ1 at T2 and T1 are significantly larger
than the jumps of χ⊥

bulk. On the other hand K ⊥
1 displays a much smaller change than χ⊥.

Similar observations can be made for Hext ‖ c. What is then the origin of the much enhanced
σ1 relative to χ⊥

bulk? The spread in fields at the µ+ must be related to inhomogeneously
distributed dipole fields arising from the field induced moments on the U sites and/or the
local conduction electron spin polarization generated as well by the field induced moments
via the RKKY mechanism. Both contributions should scale with the strength of the induced
moments. Inhomogeneously distributed fields may result from extrinsic effects, which we
have already ruled out, from a modulated lattice distortion, associated with the quadrupolar
order, or from a field induced antiferromagnetic (AFM) order in the antiferroquadrupolar state,
involving primarily the quasi-cubic U sites [25]. The latter two possibilities have indeed been
considered, but the lattice distortions are too small (c/a changes by only −6 × 10−5 [25]) to
cause the observed line broadening, and the induced AFM order produces unique dipole and
contact field at the possible µ+ sites [36].

A hint that the dipolar field may not contribute to the line broadening stems from the
relatively huge change of σ⊥

1 across T1; since the relevant dipolar coupling constant is a given
value and χ⊥

bulk or the relevant sublattice χ⊥ changes only by a few per cent, the change of σ⊥
1

must have another origin.
The almost only remaining possibility is that the line broadening is associated with the

contact hyperfine field, which implies that the conduction electron spin polarization is not the
same at the involved µ+ sites. In the light of the previous discussion this is not unexpected if
again the effect of a non-spherical charge distribution of the 4f electrons on the RKKY coupling
is invoked. In the quadrupolar phase below T1 (or T0) the quadrupole moment may assume up
to four different orientations [25, 26], and hence one may expect to find a distribution of contact
coupling constants depending on the actual arrangements of the quadrupoles next to the µ+.
A quantitative analysis of the anomalous features in the Knight shifts and the relaxation rates
is not available yet, mainly due to our ignorance concerning the magnetic response of the two
U sublattices, but it should be noted that K ‖

1 reveals a striking resemblance with the temperature
dependence of the (1, 0, 3) resonance peak intensity in x-ray scattering (figure 3(a) of [26]).

3. Contact muon Knight shift in the presence of orbital s–f exchange

The aim of this section is to show that the accurate treatment of s–f exchange for CEF-split
(LS J ) multiplet levels of the rare earth ion predicts, first, a temperature dependent amplitude
Acon of the contact µ+ Knight shift defined by

K con
α = Acon · χ(T )α, (3.1)

and second, a variation of Acon in the case of a collective reorientation of the f-shell quadrupole
moments. (Here α is a crystal symmetry axis and χα (≡χαα) is the bulk susceptibility along
this direction.) One will see that Acon consists of two terms

Acon = Acon
0 + Acon

1 (T ), (3.2)

where Acon
0 is the ‘textbook’ constant [47] derived from the usual isotropic exchange operator,

and Acon
1 , the result of the contribution of the orbital exchange mechanism, is T -dependent and

varies with the reorientation of the ionic quadrupoles. To show this, formulae for the exchange
scattering including orbital processes [48–51] will be revisited and discussed in relation to the
Knight shift.
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In most metals, the measured K con
α (T ) is in fact fairly well proportional to χα(T ), with

Acon = Acon
0 determined by parameters (kF, etc) of the s-band and the distance of the test

particle (nucleus, µ+) from the magnetic ions. Temperature dependent Acon have however also
been observed, namely in rare earth and actinide compounds, by NMR [54, 55, 31, 53] and by
µSR. This ‘anomalous’ behaviour can have different origins; here the anisotropic exchange
mechanism will be considered in the presence of a CEF.

The s–p spin polarization is the result of the exchange interaction ∝ s · sf p between
s-electrons and the pth (p = 1, 2, . . . , N) f-electron with spins s and sf p. The matrix element
of the s–f exchange operator Hex is often written in the ‘isotropic’ or de Gennes’ form

〈k′α′; J M ′
J |Hex|J MJ ; kα〉 = −2 · I (k ′, k) · (gJ − 1)〈J M ′

J |J|J MJ 〉〈α′|s|α〉, (3.3)

where J is the total angular momentum, |J MJ 〉 are states of the f-shell, |k, α〉 is an s-electron
state with wavenumber k and spin α, and the dependence on k, k′ appears merely by the factor
I (k ′, k) (the results are similar by assuming I = I (|k′ − k|)).

Equation (3.3) leads, for a weak (as compared to the LS-coupling) CEF, to a temperature
independent, isotropic Acon. In fact, for CEF-split terms �,�′, . . . within a given J manifold
with states labelled by |�λ〉,

|�λ〉 =
∑
MJ

a(MJ )
�λ|MJ 〉 (3.4)

a straightforward calculation [47] leads to an s-electron spin polarization at rµ

(ρ↑ − ρ↓)α =
ions∑

i

f (kFrµi ) · I ∗ · 〈�λ|Jα |�λ〉. (3.5)

Here I ∗ = I ∗(kF) is an average value for I (k ′, k) and f an oscillatory function with decreasing
amplitude, and rµi = rµ − Ri is the vector pointing from the ion at Ri to the muon (dealing
with identical ions, the index i is dropped for J). In a magnetic field B along the axis α, the
thermal average of equation (3.5) over the states |�λ〉 leads to 〈Jα〉 ∝ χα(T ) · B , and thereby
to

K con
α (T ) = C ·

( ions∑
i

f (2kFrµi )

)
· I ∗ · χα(T ), (3.6)

where C = C(µB, kF, . . .) is a constant.
A temperature dependent K con

α /χα = Acon indicates, therefore, a physical situation where
the limited validity of equation (3.3) becomes apparent. As shown by [48], de Gennes’ formula
equation (3.3) holds if

(1) all accessible states of the f-shell at the given T belong to a single J , and
(2) the ‘orbital exchange mechanism’, allowing in particular the change of the orbital magnetic

quantum numbers in the |L M ′〉, |L M〉 components of the states |J M ′
J 〉, |J MJ 〉, can be

neglected.

As to (1), it may be even at low temperatures not satisfied, when the CEF is sufficiently
strong to mix—unlike in equation (3.4)—wavefunctions with different J s into |�λ〉 [52]. This
J -mixing was invoked to explain the observed T -dependence of Acon in some 5f
compounds [53]. (For the particular case of the lowest levels of the rare earth ions, J -mixing
in the crystal field is in most cases negligibly small [56].)

The fulfilment of condition (2) is generally even less granted. It was shown [49, 51]
that, for lanthanide compounds, the first correction terms to equation (3.3) accounting for
orbital exchange may be considerably large; moreover, they add qualitatively new features
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to the indirect RKKY ion–ion exchange interaction (anisotropic coupling [49–51, 57, 58],
interaction terms quartic in the operators Jα [49]).

As shown below, the same turns out to be true for the µ+ Knight shift: the terms neglected
in de Gennes’ expression give rise to a T -dependent Acon, that also varies with the orientation
of the f-shell quadrupoles. This is seen by examining the complete Hex [48] as adapted for
CEF-split levels according to equation (3.4). (The formula is quoted for the case of a less
than half-filled f-shell for simplicity, but the method [48] is generally valid.) Within a single
J -manifold one has

〈k′, α′; �′λ′|Ĥex|�λ; kα〉 = −2
∑

M ′
J MJ

a(M ′
J )

�′λ′∗
a(MJ )

�λ
∑

M ′ M M ′
S MS

〈J M ′
J |M ′M ′

S〉

× 〈M MS |J MJ 〉IM ′ M(k′k)〈M ′
S |Ŝ|MS〉〈α′ |ŝ|α〉, (3.7)

where 〈J MJ |M MS〉 are Clebsch–Gordan coefficients and

IM ′ M (k′k) =
∑
µ,ν

dM ′ M
µ,ν Jµ,ν(k′, k) (3.8)

are orbital integrals; d M ′ M
µν are constants determined by the admixture of the one-electron

orbitals φ3µ(r) = R4f (r)Y3µ(Ω) in the states |L M〉 (one has
∑

µ dM ′ M
µµ = δM ′ M ), and

Jµν(k′k) =
∫

d3r
∫

d3r ′ φ∗
3µ(r)v∗

k′(r′)
e2

|r′ − r|vk(r)φ3ν(r′), (3.9)

where vk(r) are the orbital wavefunctions in the conduction band. For the single f-electron in
Ce3+(4f1 2F5/2), for example, one has d M ′ M

µν = δM ′µ · δMν so that equation (3.8) simplifies to
IM ′ M (k′k) = JM ′ M (k′k).

The case IM ′ M = I (k′k) · δM ′ M means that the orientation (i.e. M and M ′) of the orbital
components of the |J, MJ 〉 states is irrelevant in the exchange process and, in particular, only
terms with �MJ = �MS remain in equation (3.7). Then, with

IM ′ M (k′k) = I (k′k) · δM ′ M = I (k′k)〈L M ′ |L M〉 (3.10)

the sums over M ′ M can be performed and 〈M ′
S |S|MS〉 transforms into 〈J M ′

J |S|J MJ 〉 =
(gJ −1)〈J M ′

J |J|J MJ 〉, giving back de Gennes’ formula. With M-dependent diagonal and non-
zero off-diagonal IM ′ M terms, however, the admixture of the matrix elements 〈M ′

S |S|MS〉 does
not result in 〈J M ′

J |S|J MJ 〉. In particular, non-zero M ′ �= M orbital terms mean that in
�MJ = �M + �MS both orbital and spin parts contribute and the two exchange processes
are intricately mixed via the L–S coupling by equation (3.7). (The de Gennes’ expression
is exact only for an ‘orbitally spherical’ state with L = 0, as for the 8S7/2 ground level of
Gd3+. Indeed, in contrast to the 4f and 5f compounds discussed in section 2, no anisotropy
or anomalous temperature dependence of the contact contribution to the Knight shift has been
reported.)

That IM ′ M (k′, k) does in general depend on both M ′ and M is seen by separating radial
and angular variables in the Bloch functions,

vk(r) =
∑
lm

ulm
k (r)Ylm(Ωr) (3.11)

and also in |r′ − r| via its series expansion in spherical harmonics. Equation (3.9) becomes

Jµν(k′k) =
∑

l,l′=0,1,2...

∑
l̃

∑
m,m′

g(k′, k; l ′m ′, lm, l̃)〈ν|Q3(lm, l ′m ′; l̃)|µ〉, (3.12)
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where l̃ runs from max(|3 − l ′|, |3 − l|) to min(3 + l, 3 + l ′) and both l + l̃, l ′ + l̃ have to be
odd, since [49]

〈ν|Q3(lm; l ′m ′; l̃)|µ〉 = 4π

l̃∑
m̃=−l̃

〈Y3ν , Yl̃m̃Ylm〉〈Y3µ, Yl̃m̃Yl′m′ 〉, (3.13)

and

g(k′, k; l ′m ′, lm; l̃) = e2

2l̃ + 1

∫
dr

∫
dr ′ r2r ′2 R4f (r)R4f(r

′)ulm
k (r)u∗l′m′

k′ (r ′)(r l̃
</r l̃+1

> ). (3.14)

For plane waves vk(r) ≈ eikr one has

ulm
k (r) = 4π il jl(kr)Y ∗

lm(Ωk) (3.15)

showing how, for l ′, l > 0, g(k′, k) and thereby Jµν(k′, k) and IM ′ M(k′, k) depend on the
orientations of k′ and k. (The convergence in equation (3.12) is generally ensured by the

short-ranged radial functions R4f (r): (r2
4f = 0.2–0.3 Å2) and jl(0) = δl,0.)

Only the l ′, l = 0 term gives (by 〈ν|Q3(00; 00; l̃)|µ〉 = δµνδl̃,3) an isotropic exchange
integral J (k ′, k) · δµν independent of the orbital magnetic quantum numbers, and leads
therefore via equations (3.8)–(3.10) to de Gennes’ formula with I (k ′k) = 4πg(k ′k; 00; 00; 3)

and u00
k (r) = j0(kr) in the integrand of g.

Thus, so far as the angular dependence of vk(r) within the range of the radial
f-functions R4f is negligible, the orbital exchange mechanism can be ignored [48]. Clearly,
when the anisotropy of the s-band wavefunctions within the f-shell is significant, the exchange
integral Jµν should indeed depend on the relative orientation of the f-orbitals with respect to k′,
k, that is on µ, ν, and Ωk′ ,Ωk. For L > 0, therefore, Hex ∝ J · s is only a first approximation.

For plane waves the arguments in jl(kr) reach within the 4f shell the value of kFr ≈ 0.5,
and therefore the first l + l ′ �= 0 terms like that with l ′ = 0, l = 2 are not particularly
small [49]. This shows that, depending on the actual s-band functions, orbital exchange in 4f
or 5f compounds can become important.

Separating de Gennes’ expression one has

〈k′; �′λ′|Ĥex|�λ; k〉 = −2{Ik′k(gJ − 1)〈�′λ′|Ĵ|�λ〉 + 〈�′λ′|F̂|�λ〉} · ŝ, (3.16)

with

F̂ =
L∑

M ′ M=−L

ĨM ′ M(k′k)FM ′ M , (3.17)

where FM ′ M operates in the space of the f-shell states,

FM ′ M =
∑

M ′
S MS

|M ′M ′
S〉〈M ′

S |S|MS〉〈M MS | (3.18)

and the quantities ĨM ′ M(k′, k) differ from IM ′ M of equation (3.8) in that the sum in the series
expansion for the integrals Jµν(k′k), equation (3.12), contains only the ‘anisotropic’ terms
with l + l ′ > 0.

The essential point is that F is not a vector (i.e. not ∝ J), even if the components
Fα are related to Sα . In particular, with the off-diagonal M ′M terms transitions with
|�MJ | = |�M + �MS | > 1 come also into play, in contrast to an ‘isotropic’ interaction
∝〈M ′

J |J|MJ 〉.
The calculation of even the first terms in F is not simple, especially for the case of more

than one f-electron, and it requires a knowledge of vk(r) in the compound in question; it is not
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attempted here. On the other hand, the structure of equations (3.16) and (3.17) allows some
general conclusions.

First, in the paramagnetic state with no applied field B the thermal average of both terms in
equation (3.16) vanish by time inversion symmetry. By applying B, non-zero average values
appear both for J and F , and for not too strong fields these are linear in Bα. The same algebra
and integrations over k′, k leading to equation (3.5) give, by using equations (3.16) and (3.17),

K con
α (T ) = C ·

(
ions∑

i

f (kFrµi )

)
· I ∗ · χα(T ) +

ions∑
i

∑
M ′ M

C (1)
M ′ MbM ′ M (kF; rµi)χF;M ′ M;α(T ),

(3.19)

where C (1)
M ′ M are constants and χF;M ′ M;α(T ) are ‘F–J ’ response functions determining the

linear term in the thermal average 〈FM ′ M,α〉 = χF;M ′ M;α(T ) · Bα + · · · (the structure of χF;M ′ M;α
in terms of the states |�λ〉 and levels E� is similar to that of χα). The oscillatory functions bM ′ M
arise, like f (2kFrµi), in the perturbation calculation for (ρ↑ − ρ↓) through integrations over
k′,k with the functions ĨM ′ M (k′, k) in the integrands. However, because of the dependence
of Ĩ (k′, k) on the orientation of its arguments (equations (3.12)–(3.15)), the resulting bM ′ M
functions depend not only on rµi , but also on the orientation of rµi = rµ − Ri . Thus, the
anisotropy in (k′, k) of the exchange integrals results in an anisotropic s-electron spin density
distribution around each of the completely or partially oriented f-shell ions.

Since the operator F is not proportional to J , the temperature dependence of the second
sum in equation (3.19) is different from χα(T ). Thus, the two terms in equation (3.19) give

K con
α (T )/χα(T ) = Acon

0 + Acon
1 (T ), (3.20)

with

Acon
1 (T ) =

∑
i

∑
M ′ M

C (1)
M ′ M bM ′ M(kF; rµi)χF;M ′ M;α(T )/χα(T ). (3.21)

For temperatures T 	 E�′ − E� the response functions have the asymptotics χF;M ′ M;α(T ) ∝
1/T like χα(T ), and in this limit one has Acon

1 → const, as the data in section 2 indeed show.
Anisotropic exchange was invoked earlier [31] to explain the observed T -dependent

Kα(T )/χα(T ) in the NMR spectra of CeAl2. A level-dependent hyperfine parameter was
introduced, a phenomenological model to represent the variation described by equations (3.20)
and (3.21).

A basic property of Acon
1 is that, due to the above discussed anisotropy of the bM ′ M(rµi )

functions in equation (3.21), its value depends on a possible common orientation of the
f-shells. Rotating this by applying a field B (in the case of, say, cubic symmetry), the first
term in equation (3.19) does not change, both χα and A0 ≡ Acon

0 (rµi ) being isotropic. In the
second term ∝ Acon

1 , however, the orientation of each of the f-shells relative to the position
vectors rµi does change, resulting in a variation of the Knight shift.

In HoB2C2 the term Acon
1 (T ) becomes conspicuous below ≈150 K (see figures 6, 7),

accentuated by the small Acon
0 at the µ+ site. The particular dependence of A1 on the direction

of B, having as reference axis the vector rµ − Rnn pointing to the nearest neighbour ion (see
figure 7), may simply reflect the fact that the spatial anisotropy of the s-polarization, for this
special µ+ site with a single nearest Ho3+, is prevalently determined by this ion alone. Further,
the AFQ ordering in this compound may suggest that the increasingly large A1 on lowering T
is in direct relation with a partial ‘freezing out’ of the quadrupolar degree of freedom in the
paraquadrupolarphase. Assume for example that the lowest CEF state is the singlet |S〉 coming
from a �4 or �5 term split in the tetragonal field, the first excited states being the components
|±〉 of the doublet. Then 〈Qzz〉S = −2〈Qzz〉± and the thermal average will deviate from zero
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for low temperatures, T � (ED − ES). Since these are also the temperatures where Acon
1 (T )

deviates from its asymptotical ∝1/T behaviour, a correlation between 〈Qzz〉 and Acon
1 (T ) is

not surprising.
A variation of Acon

1 with the reorientation of the quadrupole moments should become
easily observable when the ionic sites have a high (cubic or tetragonal) symmetry and some of
the low lying � levels allow free rotation of the quadrupoles. The high symmetry is removed
either by a transition to an ordered FQ or AFQ phase, or by an applied field B introducing a
preferred orientation. On rotating B, e.g. in the paraquadrupolarphase of CeB6, the orientation
of the quadrupole moments follows the corresponding rearrangement of the ionic eigenstates.
Depending on the field strength, B leads to a quadrupole reorientation also below the ordering
temperature [42, 59]. This does not affect Acon

0 , since the de Gennes’ operator ∝ J · s encodes
all dependence of K con on (�, λ) entirely into the variation of χ but, as discussed above, the
reorientation becomes apparent in Acon

1 (equation (3.21)). This is manifest in the case of CeB6

(see figure 10, section 2) both in the paraquadrupolar and AFQ states, with the marked change
of Acon

1 in phase and amplitude for both µ+ sites at TQ, as expected.
In the case of quadrupolarordering, Acon

1 should reflect the variation of the order parameter
also through the corresponding changes in vk(r). A full or partial ordering on the f-ion
sublattice modifies the lattice potential V (r) determining the s-band wavefunctions, and vk(r)
should sensitively change precisely in the f-shell regions, where the anisotropic, l �= 0
components ulm

k (r)Ylm(Ωr) of vk(r) contribute to the exchange integrals IM ′ M . This is
particularly clear for OPW Bloch functions, orthogonal to the cores and to the common
f-state of the ions on the ordered sublattices of an FQ or AFQ phase. The quadrupolar
order parameter thereby enters IM ′ M(k′k) and the quantities bM ′ M (rµi) derived from them,
modifying Acon

1 via equations (3.17)–(3.19).
Lowering the temperature through TQ, the transition to a quadrupolar-ordered (FQ or

AFQ) phase implies discontinuities in both χ(T ) and the responses χF;M ′ M(T ), consequently
also in Acon

1 (T ). The discontinuity should affect the values or only the derivatives of Acon
1

depending on the order of the phase transition. For CeB6 the variation of Acon
1 confirms that

the transition is of second order.
The above discussion aimed at clarifying how orbital exchange scattering provides the

possibility to observe quadrupolar order and its variation by the µ+ implanted at the interstitial
site rµ. It is obvious, however, that the s-electron spin density, carrying over the information on
the state of the ionic multipoles into the interstitial space, is strongly perturbed near rµ by the
charged µ+. The main consequence of this perturbation is that it amplifies the spin polarization,
so that the corresponding ‘enhancement factor’ [37] enlarges the sensitivity of the µSRmethod.
On the other hand, the orbital integrals may also change in the neighbourhood of the muon, an
additional modification of Acon

1 depending on the f-shell orientation with respect to rµi .

4. Interplay of quadrupolar and magnetic order

An interesting aspect of multipolar order is to what extent the different multipole components
interact with each other, and which order parameter may be considered as primary, and which
are of a secondary nature. Another phenomenon that might be monitored by µSR is the field
induced antiferromagnetism within the quadrupolar ordered state. In the following we discuss
results obtained in PrCu2, CeAg, CeB6 and Ce0.75La0.25B6, UPd3 and in the very recently
investigated compound DyPd3S4.

4.1. PrCu2

As mentioned in the introduction, PrCu2 is known to show a combined nuclear-electronic order
below ∼50 mK [5]. Hence it was a real surprise when ZF-µSR measurements revealed the
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Figure 22. Temperature dependence of the spontaneous precession frequency in PrCu2. The solid
curve is a fit of equation (4.1) to the data (from [44]).

presence of a spontaneous internal field up to ∼65 K, displaying a very unusual temperature
dependence [44]. The temperature dependence of the single spontaneous frequency is
displayed in figure 22. It can be perfectly fitted by the expression

ν(T ) = ν0

[
1 − exp

(−E

kT

)](
1 − T

Tcr

)β

(4.1)

with E = 5.15 ± 0.05 K, β = 0.38 ± 0.04 and Tcr = 64 ± 2 K. It is further found that the
internal field Bµ is strictly confined to the (a, c)-plane and encloses on average an angle θ

with the a-axis which increases from ∼30◦ at 2 K to 45◦ at 20 K and then back to ∼35◦ at
55 K [44]. A particular Bµ at a particular site may enclose an angle with the a-axis which could
vary between −90◦ and +90◦. The findings are not inconsistent with the incommensurately
modulated structure below 50 mK determined by neutron diffraction (the ordered moments are
also confined to the (a, c)-plane) and imply an ordered moment of 0.3 µB for T → 0 K. This
value is smaller than the value from the neutron work: 0.54 µB. The quadrupolar ordering
temperature at 7.5 K is not reflected inν(T). The properties of Bµ (widespread in value, varying
orientation within the (a, c)-plane) rule out that Bµ is somehow induced by the presence of
the µ+ at the 4e site.

Equation (4.1) appears to be made up of two factors. The factor (1− T/Tcr)
β could reflect

the order parameter and (1 − exp(−E/kT )) some additional suppression of the spontaneous
field. Comparing these factors with the temperature dependence of other parameters of PrCu2

we found that the temperature dependence of the elastic constant C66 [8] is precisely reproduced
by (1 − exp(−E/kT )) with E = 5.15 K. This is shown in figure 23. The stars are calculated
according to

C66(T ) = C0 − A
[
1 − exp(−E/kT )

]
. (4.2)

They seem to track the data even better than the solid line, which represents a calculation [8].
In second-order perturbation theory

C66(T ) − C0 = −Ng2χxy(T ) (4.3)

where χxy(T ) is the strain susceptibility, N the number of ions per unit volume, and g the
magneto-elastic coupling constant. χxy(T ) is given by
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Figure 23. Temperature dependence of the elastic constant C66 in PrCu2. The indicated stars are
calculated with equation (4.2); see the text (from [44]).

χxy(T ) =
∑
n �=m

2|〈n|Oxy |m〉|2
En − Em

+
1

kT

{∑
n

exp(−En/kT )

Z
|〈n|Oxy |n〉|2

−
(∑

n

exp(−En/kT )

Z
〈n|Oxy |n〉

)2}
. (4.4)

|n〉, |m〉 are eigenstates of the crystalline-electric-field (CEF) Hamiltonian acting on the
Pr3+ ground state multiplet 3H4, En and Em the corresponding eigenvalues, and Z =∑

n exp(−En/kT ) the partition function. Oxy is one of the quadrupole moment (Stevens)
operators. As was shown in [8] and mentioned in the introduction, Oxy is also the
relevant operator in the quadrupolar interaction responsible for the establishment of the
ferroquadrupolar order below TJT. Hence we may write for the ordered moment

µ(T ) = Kχxy(T )(1 − T/Tcr)
β, (4.5)

where K is some numerical constant. This empirical relation may lend itself to the following
interpretation. The appearance of non-zero quadrupole expectation values causes strain which,
via the magneto-elastic coupling by a kind of reversed magnetostrictive effect, induces the
complex magnetic order that we have seen. The strain itself disappears above Tcr. This could
mean again that below Tcr the degrees of freedom of the quadrupole moments are partially
frozen out, establishing a semi-ordered quadrupolar state, while the fully ferroquadrupolar
state is only established below TQ. This view is supported by relaxation effects; see section 5.
Note that TQ is not reflected in ν(T ). This indicates that the fully established ferroquadrupolar
state below TQ and the ‘partial’ quadrupolar order below Tcr are sufficiently ‘similar’ as not to
alter the magnetic state. Note also that the magnetic state is not modified by a non-zero Hext

as follows from the splitting of the TF signal below Tcr for Hext ‖ (a, c)-plane [44].
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Figure 24. (a) Temperature dependence of the four spontaneous precession frequencies νi below
Tc in CeAg, (b) plot of ν1 versus the saturation magnetization (from [43]).

Of course, the question arises, why the high temperature magnetic order was not seen in the
neutron scattering experiment. It is possible that the magnetic structure is too short ranged or
highly irregular to be resolved by neutron diffraction. This view is supported by the observation
that the inhomogeneity of the spontaneous internal fields is much larger than expected on the
basis of the incommensurately modulated structure found below 50 mK. On the other hand, the
inhomogeneity may be also caused by the random Pr nuclear dipole field enormously enhanced
by the hyperfine-interaction-induced polarization of the f-electron shell [6, 44]. In summary,
the invisibility of the high temperature magnetic order to neutrons is not yet fully understood.
Currently attempts are under way to confirm the high temperature magnetic order by NMR
measurements using the Cu nuclear spins. First encouraging results have been obtained [83].

4.2. CeAg

This compound is known to order ferromagnetically below 5.5 K. ZF-µSR measurements
revealed four spontaneous frequencies νi whose temperature dependence is displayed in
figure 24 [43]. The frequencies ν2, ν3, and ν4 are attributed to µ+ localized at the c site,
and correspond to the threefold-split TF signal above Tc, discussed in section 2. The fourth
frequency, ν1, which scales very well with the domain magnetization Md (see figure 24), is
attributed to µ+ localized at a defect site. As can be seen, the temperature dependence of ν2, ν3

and ν4 is anomalous. In particular, ν2 and ν3 rise with increasing temperature on approaching
Tc and do not follow Md(T ).

For a ferromagnet with zero net magnetization the internal field is given by [60]

Bi = 4π

3
Md + B

dip
i + Bcon

i

= 4π

3
Md +

(↔
A

dip

i + Acon
i

)
· Md, (4.6)

where the first term represents the Lorentz field and Md is the domain magnetization.
According to [18] the ordered moments or Md (�1 µB/Ce), respectively, are oriented along

the c-axis, and therefore
↔
A

dip

i · Md = Adip
cc,i Md, where Adip

cc,i are given by the calculated values
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Table 2. Compilation of spontaneous frequencies νi , internal fields Bi , extracted hyperfine fields
at 3 K and considered site assignments.

Signal i νi (MHz) Bi (kG) Bdip + Bc (kG) Bc (kG)a Site

1 11.79 (13) ±0.87 (7) +0.145, −1.59 −0.64 (1) Ag vacancy

2 14.47 (26) ±1.07 (22) +0.345, −1.795 −0.30 (2) (0 1
2

1
2 )

3 24.21 (7) ±1.79 (5) +1.065, −2.515 −3.22 (1) ( 1
2 0 1

2 )

4 36.42 (26) ±2.69 (22) +1.965, −3.415 −4.20 (2) ( 1
2

1
2 0)

a Bc is obtained by using the underlined values for Bdip + Bc and calculated Bdip for the considered
site from table 1 and µ = 1 µB.

for the c sites (see section 2.4). The peculiar temperature dependence of Bi(T ) may then
again be traced back to Acon

i (T ), assuming that the ferromagnetically ordered moments in the
vicinity of the µ+ are not affected by the µ+. A straightforward extraction of Acon

i (T ) from
equation (4.6) is impeded by the fact that the relative sign of Bi and Md is not determined in
zero field measurements. The possible values of (Adip

cc,i + Acon
i )Md at 3 K are collected in table 2.

Independently of the choice of the sign of Bi (i = 2, 3, 4) relative to Md and the assignment
of the νi to a particular c site, we find that the contact coupling constant Acon

i has to rise with
increasing temperature when Tc is approached in order to reproduce νi (T ). A possible choice
is to assign ν2 to the site (0 1

2
1
2 ), ν3 to ( 1

2 0 1
2 ) and ν4 to ( 1

2
1
2 0), and to assign a negative sign to B2,

B3 and B4. With this choice we extract the Acon values displayed in figure 14. Acon for the site
(0 1

2
1
2 ) shows a smooth increase in absolute value from 3 K up to high temperatures. For the

other two sites an abrupt change of Acon at Tc is indicated. Similar results are found for other
choices, demonstrating that some of the contact coupling parameters are strongly modified by
the ferromagnetic phase transition in contrast to the absence of any anomalies at TQ.

Hence it appears as if the ferroquadrupolar state undergoes some structural modification
at Tc. Between Tc and TQ no evidence for static magnetic features are seen, either in zero field
or in transverse fields.

4.3. CeB6,Ce1−x LaxB6

Below TN = 2.3 K, CeB6 develops a rather complicated antiferromagnetic structure
characterized by a multiple-k behaviour [2]. As was pointed out before, the µ+ occupy a
unique site, the d site, in this cubic compound. Yet below TN in zero field eight different
spontaneous internal fields are observed (see figure 25) [61]. With the magnetic structure
promoted in [2], it proved impossible to explain the presence of eight internal fields. Recent
new neutron powder, single-crystal diffraction and spherical polarimetry measurements lead to
a new structure determination (D model),which admitted the occurrence of eight different fields
across the d sites [9]. However, to reproduce at least approximately also the values of the local
fields, the contact coupling constants Acon

‖ and Acon
⊥ had to change from −4.2 and 2.3 kG/µB

just above TN (see figure 8) to +4.4 and +1.67 kG/µB, respectively, for T → 0 K. (Remarkably,
the latter two values are closer to the values above TQ.) The anomalous temperature dependence
of three out of the eight spontaneous frequencies, not reflected in the neutron data, may again
be attributed to Acon. It is interesting to note that in model D of [9] the in-plane arrangement
of the magnetic dipole moment and the Oxy -type electrical quadrupole moments is the same,
while this correspondence is lost when comparing neighbouring (001)-planes. Also the dipole
moment values are different on neighbouring planes. It is suggested that, besides magnetic
dipoles and electric quadrupoles, magnetic octupoles also play an important role, in particular
stabilizing the magnetic moment arrangement in the D model [9].
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Figure 25. Fourier spectrum of the ZF-µSR signal in CeB6 at 60 mK, showing the presence of
eight spontaneous precession frequencies (from [61]).

Figure 26. Temperature dependence of the Gaussian and exponential relaxation rates σ and λ in
Ce0.7La0.3B6. The ZF-µSR signal follows the expression P(t) = A1 exp(−σ 2t2) + A2 exp(−λt)
with A2 � A1/4 below∼0.7 K (from [62]). The exponentially relaxing component, which indicates
spin–lattice relaxation, signals the persistence of fluctuating field components in phase IV.

As mentioned in the introduction, below TQ a field induced simple antiferromagneticorder
is observed in CeB6. This order leads to zero effective dipole and contact fields at the highly
symmetric d site and hence cannot be seen by the muons. In fact no magnetic signature was
seen in the TF measurements below TQ, quite in contrast to NMR measurements involving the
B-nuclei [12].

The magnetic and quadrupolar phase diagram of CeB6 becomes more complicated by
partial substitution of Ce by La. A new phase IV appears (see figure 3), the nature of which
is not yet fully characterized and understood. Neutron scattering has not produced evidence
for long range magnetic order in phase IV [15]. However, ZF-µSR measurements in samples
with x = 0.7 [62] and x = 0.75 [63] show a rapidly increasing Gaussian relaxation behaviour
when crossing into phase IV below ∼1.6 K. See figures 26, 27. Phase IV extends down
to zero temperature for x = 0.7 and down to ∼1.3 K for x = 0.75. In the latter case
phase III reappears below 1.3 K. The Gaussian relaxation rates imply static internal field
spreads of the order of 300–500 G or randomly frozen moments of order 0.13–0.16 µB. This
could indicate that a random static order similar to the order in a spinglass is established
in phase IV, but certainly long range order is also ruled out by the µSR results. On the
other hand, recent thermal expansion measurements in phase IV suggest that phase IV is
characterized by a ferroquadrupolar order with 〈Oyz〉 = 〈Ozx 〉 = 〈Oxy 〉 �= 0 [64]. If true, it is
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Figure 27. Temperature dependence of (a) the Gaussian relaxation rate σ and (b) the amplitudes
A1 and A2 of the Gaussian and exponential components, respectively, in Ce0.75La0.25B6. See the
caption of figure 26. The extension of phase IV is clearly visible (dashed vertical lines). Note that
the Gaussian component is absent in the paramagnetic phase (from [63]).

tempting to speculate that the random static order revealed by µSRis somehow connected to the
ferroquadrupolar order, perhaps similar to the case in PrCu2, a problem left for future studies.
It has also been suggested that phase IV is characterized by magnetic octupolar ordering [3].
A resultant field of about 40 G is estimated for the d site which is clearly not supported by the
measurements. This does not necessarily rule out octupolar order since the octupolar fields
may be masked by dipolar fields.

Interestingly in the x = 0.75 sample below 1.3 K, i.e. in phase III, the dominant µSR
signal is still showing a Gaussian relaxation instead of the multifrequency signal seen in CeB6

in phase III [63]. The random field spread extrapolated to zero temperature amounts to 500 G,
more or less equal to the result in the x = 0.7 sample [61]. However, the III–IV phase transition
is well reflected in the slope dσ/dT . The absence of a multifrequency signal is puzzling, since
recent neutron diffraction results show that the magnetic structures of phase III in CeB6 and
Ce0.75La0.25B6 are apparently identical [15].

We hope to learn more about the nature of phase IV by further Knight shift measurements.

4.4. UPd3

It is claimed that the phase transition at T2 � 4.4 K is partially of a magnetic nature, leading
to a very weak antiferromagnetic order with limited correlation length and with very small
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Figure 28. Temperature dependence of the ZF relaxation rate σ in UPd3. Note the absence of any
anomalies at either T0, T1 or T2 (from [36]).

ordered moments of order 10−2 µB/U atom or less, and partially associated with changes in
the antiferroquadrupolar (AFQ) order [24, 25]. ZF-µSR measurements below T2 [36] showed
the µ+ polarization to follow a Kubo–Toyabe function with a rather small decay constant
of σ � 0.065 µs−1 (see figure 28). This value can be reproduced by considering only the
nuclear dipole fields of the 105Pd constituents. A moment as small as 0.01 µB on the quasi-
cubic U sites would lead to internal fields of 2–26 G considering various possible µ+ sites
and simple antiferromagnetic structures. Such fields should have been well visible in the µSR
spectra. For example, a random field of 2 G would lead to a decay rate of σ = 0.17 µs−1, much
larger than the observed value. The situation is reminiscent of the situation in UPt3 [65–68]
and was explained on the basis of slow AF-correlated spin fluctuations, which within the time
window of neutron scattering appear static and within the time window of µSR appear fully
dynamic [69].

The Knight shift K1 drops remarkably below T2 for Hext ⊥ c-axis (see figure 20) and
appears rather temperature independent for Hext ‖ c-axis (see figure 19). It is argued in [39]
that this behaviour is again to be attributed to the contact hyperfine field and the local conduction
electron polarization which is affected by the changes in the AFQ structure. Resonant
x-ray scattering on UPd3 has revealed directly the change in AFQ structure at T1 [26], but
corresponding results for the change at T2 are not yet available.

4.5. DyPd3S4

We recall that this compound shows two magnetic phase transitions at TN1 � 1 K and
TN2 � 0.75 K and an antiferroquadrupolar transition at TQ = 3.4 K. So far only results
from powder samples are available. Preliminary µSR measurements in zero and longitudinal
fields reflect all three phase transitions; see figure 36 [70]. Below TN1 the ZF as well as the LF
signal at 0.1 T is best fitted by the three-component function

P(t) = A1e− 1
2 σ 2t2

+ A−λ2t
2 + A3e−λ3t (4.7)

with A2 + A3 � 1
2 A1. Above TN1 in ZF, P(t) changes to the two-component function

P(t)ZF = A′
1e−λ′

1t + A′
2e−λ′

2t (4.8)

and in LF up to TQ to

P(t)LF = A∗
1e− 1

2 σ ∗2t2
+ A∗

2e−λ∗
2 t . (4.9)
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The latter observation is quite uncommon, since usually in LF the µ+ spin is more or less
decoupled from static internal fields and the observed relaxation is of the spin–lattice relaxation
type and follows an exponential behaviour. Interestingly σ ∗ has the same magnitude as σ below
TN2 . This could suggest that the external field induces a magnetic order below TQ as observed
in CeB6 and other compounds, and that this order is the same as in ZF below TN2 . Indeed
subsequent neutron diffraction studies at PSI have confirmed this conjecture [70]. The µSR
data present several puzzles, which have to be understood in the future. For example, the
amplitudes above TN1 are more or less the same in ZF and LF, but are temperature dependent,
i.e. A′

1 � A∗
1 and A′

2 � A∗
2. (Note that

∑2
i=1 A′

i = ∑2
i=1 A∗

i = Atot, where Atot is the
total asymmetry, as obtained by calibration measurements in weak TF above TQ. Hence all
implanted µ+ contribute to the µSR signal.) A σ � 80 µs−1 translates into a field spread of
∼940 G, comparable to the applied field. Therefore on the basis of the Kubo–Toyabe scenario
one would have expected that A∗

1 < A1. At 0.9 K one finds even that A∗
1 > A1. Further

features will be discussed on section 5.

5. Dynamic effects

5.1. Introduction

As far as we are aware of little is known about the interplay of quadrupolar degrees of
freedom and f-electron spin dynamics. Since f-electron magnetic dipole moments and electric
quadrupole moments are not independent of each other, it may be expected that the development
of quadrupolar order could be reflected in a slowing down of the spin dynamics and a
consequently increased spin–lattice relaxation rate of the implanted µ+. The fluctuating
magnetic fields at the µ+ arise, as in the static case, either directly from the 4f-moments
or indirectly via the induced conduction electron spin polarization. In the latter case random
stochastic reorientations of the quadrupole moment may also render the RKKY coupling time
dependent and contribute to the fluctuations of the conduction electron spin polarization at the
µ+, i.e. the fluctuations arise from the fluctuating f-moments, µf(T ), and from the stochastic
time dependence of the exchange integral in the RKKY mechanism. Hence within the frame
of the Redfield theory [71] we may write for the µ+ spin–lattice relaxation rate

λ = 1

T1
= γ 2

µ〈B2
dip〉

τdip

1 + ω2τ 2
dip

+ γ 2
µ〈B2

c 〉 τ ∗

1 + ω2τ ∗2
, (5.1)

with

1

τ ∗ = 1

τdip
+

1

τQ
, (5.2)

where τdip and τQ are correlation times characterizing the 4f dipole- and quadrupole-moment
fluctuations, respectively. 〈B2

dip〉 and 〈B2
c 〉 are the second moments of the corresponding field

distributions in the static case and ω = γµ Hext.
We have indeed found that the µ+ spin–lattice relaxation rate λ is affected by the onset

of quadrupolar order in PrCu2, CeAg and DyPd3S4; see below. In UPd3, λ was unmeasurably
small. In CeB6, λ was large enough to be measured, but no significant anomaly at or near
TQ was visible [72]. According to [72] the observed temperature dependence of λ in a small
longitudinal field above TQ is predominantly caused by the Kondo effect, involving the d-type
conduction electrons.

In the quadrupolar ordered phase one may also expect to see collective excitations,
analogous to magnon excitations; see e.g. [73, 74]. This may lead to characteristic temperature
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Figure 29. Temperature dependence of the spin–lattice relaxation rate λ in ZF in PrCu2. The inset
shows λ above 60 K; the solid curve represents an exponential fit (from [44]).

dependences in the µ+ relaxation rates (as observed in the case of magnon excitations), which
may be observable. This possibility needs still to be explored.

5.2. PrCu2

The zero field measurements revealed that the non-oscillating component of the initial µ+

polarization along the spontaneous internal field displayed significant relaxation and above
Tcr � 64 K the full initial polarization relaxed [44]. The results are shown in figure 29. As
can be seen, a cusp-like behaviour appears at Tcr and above Tcr λ decreases exponentially
with rising temperature (see the inset). However, no anomaly is evident at the quadrupolar
ordering temperature TQ � 7.5 K. The increase of λ on approaching Tcr from above seems
to signal a slowing down of the field fluctuations at the µ+, preceding the appearance of the
‘high temperature’ magnetic order, as described in the previous section. Upon application of
a longitudinal field λ(T ) is reduced, most strongly near Tcr, and the cusp tends to be rounded
off. Above a field of 400 Oe the anomaly near Tcr has disappeared (see figure 30, showing λ

at 2 kOe), and λ(T ) is well fitted by the expression (except in the vicinity of TQ)

λ∗(T ) = λ0

T
+ λconst, (5.3)

where λ0 is strongly anisotropic, while λconst � 0.095 µs−1 is independent of orientation.
Interestingly the data show a cusp-like anomaly at TQ which grows with the strength of the
applied field (see the inset in figure 30). In summary, the ZF data display an anomaly at Tcr, but
not at TQ, while in strong LF an anomaly appears at TQ, but not at Tcr. The field dependence
of λ has been measured at various temperature up to 80 K for both Hext ‖ c and Hext ‖ b. The
results for Hext ‖ c are displayed in figure 31. The data can be well fitted by the equation

λ(T, H ) = γ 2
µ〈B̃2

⊥〉τc(T )

1 + ω2τ 2
c

+ λ∗(T ), (5.4)

involving a field dependent and a field independent term. The latter is precisely given by
equation (5.2) and the first term by the Redfield formula. The fitted values of the parameters
τc, γ

2
µ〈B̃2

⊥,2〉 and λ∗ are displayed in figure 32 as a function of temperature.
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Figure 30. Temperature dependence of λ in LF at 2 kOe for Hext ‖ b-axis and for Hext ‖ c-axis
in PrCu2. The solid curves represent fits of equation (5.2) to the data. The inset show λ at 4 kOe,
displaying a pronounced cusp at TQ = 7.5 K (from [44]).

Figure 31. Longitudinal field dependence of λ in PrCu2 at various temperatures for Hext ‖ c-axis.
The solid curves are fits of equation (5.3) to the data (from [44]).

We now first discuss the field independent term. The field independence implies that
ωτ ∗

c � 1, where τ ∗
c is the relevant correlation time of the responsible fluctuating fields B̃∗

⊥
and hence τ ∗

c � 1/ω = 1/γµHext up to at least Hext = 4 kOe, i.e. τ ∗
c � 3 × 10−9 s. With

λ∗(2 K) � 1 µs−1 for Hext ‖ c it follows that
√

〈B̃∗2
⊥ 〉 	 1.35 kG. Both the short τ ∗

c and
the large fluctuating field amplitude indicate that one seems to monitor fluctuations of an
appreciable part of the full Hund’s rule moment of Pr3+ (3.58 µB). The anisotropy of λ0,
i.e. λ0(Hext ‖ b)/λ0(Hext ‖ c) � 4, implies that the fluctuating fields are well confined to the
(a, c)-plane and within the (a, c)-plane nearly perpendicular to the static spontaneous fields
below Tcr. The absence of any anomaly at Tcr (no slowing down of the spin dynamics upon
approaching Tcr from above) implies that only a small fraction of the full Hund’s rule moment
is involved in the magnetic order below Tcr, as already indicated by the small ordered moment
of ∼0.29 µB below 1 K. However, it is remarkable that the onset of the antiferroquadrupolar
order at TQ leads to an increase of λ∗, which indicates that the fluctuations are slowed down
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Figure 32. Temperature dependence of (a) τc, (b) (γµ B̃⊥)2, (c) λ∗ in PrCu2. The solid curve in (c)
represent fits of equation (5.2) (from [44]).

by perhaps 30% at and near TQ. This feature, limited to a region close to TQ, needs still to
be analysed. The overall 1/T dependence translates into τ ∗ ∝ T , which suggests that the 4f
electron relaxation is basically induced by the Korringa mechanism.

Next we turn to the field dependent contribution to λ, the first term in equation (5.3).
Figures 32(a), (b) display a rather unusual behaviour. The fluctuation rate 1/τc is relatively
slow, amounting to 5 × 107 s−1 at ∼2 K, decreases to a minimum of 3 × 106 s−1 at 50 K,
and starts to increase again above 50 K. In comparison to 1/τ ∗

c , 1/τc is at least an order of
magnitude slower. Very unusual is the temperature dependence of the involved fluctuating
field amplitudes B̃⊥, which are essentially isotropic and drop rapidly from about 140 G at 2 K
to less than 10 G above 20 K. From the ratio B̃⊥/B̃∗

⊥ one estimates that the slowly fluctuating
moment components are of order 0.1 µB at 2 K.
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We are thus confronted with a situation in which the Pr 4f-moment possesses a large
anisotropic component which fluctuates rapidly, perhaps driven by the Korringa mechanism,
and a small slowly relaxing, essentially isotropic component which slows down when Tcr is
approached from above and splits into a static part below Tcr, manifest through the spontaneous
static field, sensed by the µ+, and a component which continues to generate fluctuating fields
at the µ+. As figures 32(a), (b) imply, the latter components gain in strength and the fluctuation
rate increases as the temperature is decreased.

Following the assertion, promoted in section 4, that the spontaneous magnetic order is
driven by a primarily quadrupolar mechanism,we also consider that the slowing down observed
in ZF, preceding the establishment of the ‘high temperature’ magnetic order, is somehow
connected to quadrupolar effects, and it appears reasonable to assume that it reflects the
freezing out of quadrupolar degrees of freedom which also controls the slowing down of a
part of the full Hund’s rule moment of Pr3+. The persisting slow and unusual spin dynamics
below Tcr (besides the fast component) may be attributed to the remaining degrees of freedom
of the quadrupole and the relevant dipole moments. The increase of B̃⊥ below 20 K (see
figure 32(b)) may reflect the increase of Acon

a,b (see figure 18) and the peculiar temperature
dependence of τc (figure 32(a)) may originate from different temperature dependences of τdip

and τQ, with τdip < τQ at low T and τdip > τQ above Tcr. Hence the µ+ relaxation above Tcr may
be dominated by fluctuating dipolar fields and at low T by fluctuating contact hyperfine fields.

Clearly our understanding of the two channel relaxation behaviour is rather vague and
incomplete. It is an open question to what extent quadrupolar effects are involved, but we can
also not exclude them as, at least, the cusp-like anomaly of λ at TQ demonstrates.

5.3. CeAg

ZF (LF) measurements above Tc extended from 7 K (6) to 300 K (250) [43]. The ZF signal
below TQ displayed a two-component behaviour which was best fitted by the expression

P(t) = A1 exp(−λ∗
1t) + A2 exp(−λ∗

2t), (5.5)

where λ∗
1 > λ∗

2 and A1/A2 = 2 independent of temperature. The fit results for λ∗
1, λ

∗
2 are

displayed in figure 33. Above TQ the signal is given by a single exponential decay function
with relaxation rate λ0 and amplitude A0 = A1 + A2 = full initial asymmetry. In the range
16 K � T � 70 K, λ0(T ) is excellently fitted by the expression

λ0(T ) = λ0

(T − T ∗)β
(5.6)

with β = 0.70(4) and T ∗ = 14.7(4) K, which suggests to identify T ∗ with TQ (see figure 34).
Thus it appears as if λ0(T ) reflects a critical slowing down of the Ce 4f-moment as TQ is
approached from above. The fitted critical exponent β agrees with the predictions for a 3D
Heisenberg system, with inclusion of non-spin conserving dipole–dipole interactions [75], but
this appears rather fortuitous. The slowing down behaviour suggests that the Ce 4f-moments
like to enter into a magnetically ordered state already at TQ. The onset of the quadrupolar order
seems to prevent this. Alternatively it is the freezing out of quadrupolar degrees of freedom on
approaching TQ which via the second term in equation (5.1) drives the µ+ spin relaxation. This
would imply that τQ � τdip and that the contact hyperfine field is the relevant dominating field
at the µ+. According to the Knight shift results the contact fields, averaged over the c sites,
are indeed larger than the corresponding dipolar fields.

The two-component behaviour below TQ with the amplitude ratio 2 and the rather large λ∗
1

(∼12 µs−1 at 7 K) could suggest that it reflects a static random field distribution of Lorentzian
shape and the 1/3-term persisting fluctuating field components perpendicular to the initial
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Figure 33. Log–log plot of the temperature dependence of λ∗
1 and λ∗

2 (equation (5.4)), of λ0 and
λ5 in CeAg. λ5 is the relaxation rate of the non-oscillating term below Tc, pointing to fluctuating
fields also below Tc (from [43]).

Figure 34. Linear plot of λ0 in CeAg versus temperature. The solid curve represents a fit of
equation (5.5) to the λ0 data. The inset shows log λ0 versus log(T − TQ) (from [43]).

µ+ polarization. However, λ∗
1 is not much reduced in a longitudinal field of 6 kOe (see

figure 35), implying that the 2/3 component in equation (5.4) is not of static origin. Hence
both components must be of dynamic origin.

The ratio A1/A2 = 2 finds a natural explanation if the fluctuations of the Ce 4f-moments
are restricted to the tetragonal axes. Suppose that the fluctuations are along the [001] or [010]
axes and that the initial µ+ polarization Pµ(0) along the [100]-axis. Then µ+ located at all the
d sites will experience fluctuating dipolar and contact fields perpendicular to Pµ(0) and hence
will relax. However, if the fluctuations are restricted to the [100]-axis, parallel to Pµ(0), the
resulting fluctuating fields at the d sites will also be parallel to Pµ(0), and hence no relaxation
will occur. Therefore one expects that 2/3 of the implanted µ+ will show relaxation and
the remaining 1/3 fraction no, or only very slow relaxation, perhaps if the sample is slightly
misaligned or the fluctuations are not 100% restricted to one of the crystal axes. In any case the
onset of ferroquadrupolar order seems to restrict the degrees of freedom of the Ce 4f-moment
fluctuations to an uniaxial behaviour. This is not unexpected considering the interdependence
of the 4f-quadrupole and magnetic-dipole moments.
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Figure 35. Log–log plot of the LF relaxation rate λLF in CeAg versus temperature. The ZF
relaxation rates λ∗

1 and λ0 are indicated by the dashed line. The inset in the lower left corner
displays λLF versus log T . The solid curve represents again a fit of equation (5.5). The upper right
inset displays α(T ), see text (from [43]).

Figure 36. Temperature dependence of the various relaxation rates in DyPd3S4 in ZF and LF
(1 kOe), as defined in equations (4.7)–(4.9). Note the anomalies at TN2 , TN1 and TQ and the
persistence of a Gaussian rate σ in LF above TN1 up to TQ (from [70]).

Interestingly, in strong longitudinal field the two-component behaviour below TQ gives
way to a one-component stretched exponential behaviour

P(t) = A0 exp(−(λLFt)α) (5.7)

with α approaching 0.5 as TC is approached from above. Above TQ λLF(T ) is again following
equation (5.6), but T ∗ � TC and β � 2. Hence it appears that in LF the slowing down of
the Ce 4f-moment dynamics is preparing a freezing at TC, not at TQ as in ZF, but the onset
of the quadrupolar order disturbs this trend and λLF(T ) shows an inflection point at TQ and
not a ‘critical’ behaviour on approaching TC. In particular in strong LF the one-dimensional
fluctuations below TQ seem to change to a more isotropic behaviour as above TQ. The stretched
exponential behaviour below TQ may originate from a spatial distribution of the relaxation rates
λLF, i.e. application of a field introduces a certain inhomogeneity into the system. This feature
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has yet to be understood, but it points to competitive mechanisms in the presence of a non-zero
Hext. It is, of course, tempting to attribute the different temperature dependences of λZF and
λLF above TQ to the field induced (ferro) quadrupolar state.

In summary, the fluctuating fields at the µ+, consisting of dipolar and contact hyperfine
contributions, are strongly affected by the onset of the ferroquadrupolar order at TQ. It is
possible that the increase of the µ+ spin relaxation rate on approaching TQ from above arises
from the, perhaps critical, slowing down of quadrupole fluctuations. Below TQ the fluctuations
of the Ce 4f-moments appear to be restricted to the tetragonal crystal axes, along which also
the moments are aligned in the ferromagnetic state below TC.

5.4. DyPd3S4

As stated in section 4.5, the ZF-µSR signal above TN1 � 1 K consists of two exponentially
relaxing components [70]. The associated relaxation rates λ1 and λ2 are displayed in figure 36.
Their temperature dependence shows a clear break at TQ. The associated amplitudes A1, A2

are temperature dependent but A1 + A2 = constant = initital asymmetry. This behaviour
suggests that the µ+ reside either in magnetically differently behaving domains or phases
or at magnetically/crystallographically inequivalent sites. In any case the populations of the
two µ+ fractions are temperature dependent. Near TN1 , A1/A2 � 4, which reduces to about
1 above TQ. λ1 and λ2 are interpreted as spin lattice relaxation rates. Hence the onset of
antiferroquadrupolarorder has a pronounced effect on the Dy 4f-moment dynamics. However,
λ1 and λ2 are nearly temperature independent above TQ up at least to 10 K, in contrast to the
behaviour in CeAg. The increase of λ1, λ2 below TQ signals a slowing down of the Dy 4f-
moment fluctuations inside the quadrupolar ordered phase, but no drastic slowing down upon
approaching TN1 is seen. As mentioned in section 4.5, in LF of 6 kOe the amplitudes A∗

1 and
A∗

2 are unchanged from the ZF values, showing the same temperature dependence. However,
λ∗

2 > λ2 and the first component changes to a Gaussian behaviour (see figure 36). Hence the
Dy 4f-moment dynamics is significantly affected by the applied field: the second component
reflects a further reduction of the Dy 4f-moment fluctuation rates below TQ (but not above
TQ!), and the first component, as mentioned previously, seems even to point to the presence
of static magnetic fields at the µ+. Both features suggested a field induced magnetic order
in the antiferroquadrupolar phase below TQ, which was subsequently confirmed by neutron
scattering measurements [70]. By which mechanism the Dy 4f-moment dynamics is controlled
by the quadrupolar order is as yet not understood. Measurements on single crystals will shed
more light on this problem.

6. Octupolar order in NpO2?

In connection with the discussion of phase IV in Ce1−x LaxB6 (x = 0.7, 0.75) in section 4.3,
we mentioned that this phase may be characterized by a ferroquadrupolar order. On the other
hand, µSR [61, 62] and NMR [76] studies of phase IV, which revealed some type of magnetic
order, suggest that time reversal symmetry is broken in phase IV. This is incompatible with
pure quadrupolar order [3]. Hence it was conjectured that octupolar order, which breaks time
reversal symmetry, may take place in phase IV and provide a primary order parameter [3, 16].
However, the magnetic fields generated by magnetic octupoles at the µ+ site are too small to
explain the actually measured field spread.

Similar problems are encountered in NpO2. This compound shows a phase transition at
T0 � 25.5 K but neither Mössbauer spectroscopy [77] nor neutron scattering [78] succeeded
in finding magnetic order below T0. In contrast, µSR measurements revealed a spontaneous
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Figure 37. Temperature dependence of the spontaneous precession frequency in NpO2 (from [79]).

precession signal, appearing below T0 [79], reflecting an internal field at the µ+ of ∼500 G
at 8 K. The temperature dependence of the spontaneous precession frequency is shown in
figure 37. The authors of [79] deduce an ordered moment of 0.1 µB from the observed internal
field. This value is much larger than the upper limit provided by the Mössbauer results:
0.01 µB. Results from a resonant x-ray scattering experiment were interpreted to arise from an
antiferromagnetic state similar to the one found in UO2 [80]. However, this interpretation has
been questioned in [81]. In any case the small ordered moment extracted from the µSR results
is difficult to explain since NpO2 is a semiconductor and Kondo screening is not possible.
As a way out Santini and Amoretti discussed the possibility that NpO2 develops a magnetic-
octupole order below T0 [4], which would permit the violation of time reversal symmetry and
the presence of interstitial magnetic fields. More recently another resonant x-ray experiment
by Paixão et al [81] revealed directly a long range triple-q antiferroquadrupolar order which
could be driven by the ordering of magnetic octupoles below T0, necessary to explain the
µSR and Mössbauer results. Unfortunately, no estimates on the expected interstitial magnetic
fields were given and it is questionable whether magnetic octupoles could produce fields of
the required strength of 500 G. Such estimates were provided by Kubo and Kuramoto [3] in
the case of Ce1−x Lax B6, as discussed in section 4.3, and found to be too small by an order of
magnitude compared to the experimental finding. Thus the origin of the spontaneous field at
the µ+ in NpO2 appears still unsettled and the importance of octupolar effects is an open but
most fascinating topic [82].

7. Summary

The information inferred from recent µSR studies, reviewed and elaborated in the previous
sections, reflect the richness of physical phenomena provided by the simultaneous presence
of different multipole interactions in metallic rare earth and actinide systems. While the
interaction of the µ+ with both the f-shells and conduction electrons is a priori magnetic,
the orbital exchange mechanism and LS-coupling makes the µSR response of the system to
variations of the external parameters (T,B) sensitive also to the orbital states of the ions.
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To clarify this, an expression for the contact interaction parameter Acon taking into account
orbital exchange scattering in case of CEF-split LS J levels, has been found and discussed in
some detail. One has seen that, in particular, freezing out of quadrupolar degrees of freedom
with decreasing temperature, or the reorientation of the quadrupoles following the rotation of
the applied field B, may be monitored by the variation of Acon. In the quadrupolar ordered
phase Acon may even reflect the temperature dependence of the order parameter, as seems to
be observed in CeB6.

Field induced octupolar ordering is considered to play a decisive role in many cases (e.g. in
CeB6, NpO2), but it is an open question whether the associated magnetic fields at the µ+ are
strong enough to be noticed.

Beyond the multipolar effects contributing the µ+ Knight shift, which are in principle
understood, unexpected features of possible quadrupolar origin are observed as well. In
particular the appearance of a high temperature magnetic order in PrCu2 has to be mentioned.
A similar observation is also made in the compound PrCoAl4 (unpublished results). Another
feature, indicated by the µSR measurements, is a possible modification of the ordered
quadrupolar structure by the onset of magnetic order (e.g. in CeAg, CeB6 and PrCu2). Not
understood at all at present is, in Ce1−x Lax B6 (x < 0.8), the observation of short range
or random order by µSR and long range order by neutron scattering in the new phase IV.
On the other hand, µSR measurements provided the first indication for a field induced
antiferromagnetic state in DyPd3S4 below TQ, which subsequently was confirmed in more
detail by neutron scattering.

Finally, µSR measurements revealed also the influence of quadrupolar effects on the
temporal fluctuations of the magnetic fields at the µ+ site. This may concern the spin dynamics
of the f electrons, as in the case of CeAg and DyPd3S4, or the quadrupolar (and perhaps
octupolar) dynamics affecting the contact hyperfine field. An intriguing possibility is that
through the µ+ spin relaxation collective excitations in the quadrupolar ordered state may also
become accessible for study.
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